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Introduction

Lecture notes for a minicourse at “London Summer School and Workshop: The Sen Con-
jecture and Beyond”, June 19 – June 23, 2017, at UCL.

1. First lecture: Generalities

Reference recommendation for an overview:

• Gilles Carron, ‘L2 harmonic forms on non-compact manifolds’,
• Xianzhe Dai, ‘An introduction to L2 cohomology’,
• Steven Zucker, ‘L2 Cohomology of Warped Products and Arithmetic Groups’, sec-

tions 1 and 2,
• Leslie Saper, ‘L2-cohomology of algebraic varieties’,
• Daniel Grieser and Matthias Lesch, ‘On the L2-Stokes theorem and Hodge theory for

singular algebraic varieties’

1.1. Topological manifolds. For fun let us start by recalling that there is an analytic
approach to cohomology on most topological manifolds1. Indeed, let M be a compact, ori-
ented, connected topological manifold without boundary of dimension m 6= 4. A theorem
of Sullivan guarantees that M has an (essentially unique) Lipschitz structure. That is, we
can parametrize M with charts homeomorphic to the unit ball in Rm so that the transition
functions are locally bi-Lipschitz.

Lipschitz functions are differentiable almost everywhere with derivatives in L∞ so bi-
Lipschitz homeomorphisms preserve the class of Lebesgue measure and a Lipschitz manifold
has a canonical measure class and a well-defined set of L2-functions. Since M is not smooth
we can not talk about a cotangent bundle but we can still make sense of L2 differential form
of degree j,

ω ∈ L2Ωj(M),

as an object that in each coordinate chart is a differential form on Rm,∑
fi1,...,ij dx

i1 ∧ . . . ∧ dxij ,

with coefficient functions in L2. The usual transformation rules are assumed to hold and
they preserve the L2 condition as they involve multiplication by determinants of matrices of
(weak) partial derivatives of transition functions, and these are all in L∞.

Similarly a Riemannian metric is defined without reference to vector bundles as a com-
patible collection of measurable Riemannian metrics, one on each coordinate chart, with the

1We follow the exposition in “Applications of Analysis on Lipschitz manifolds” by Jonathan Rosenberg
where one can find references to the papers of Sullivan and Teleman in which these results were established.
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property that they define L2-norms equivalent to the L2-norm on Rm. As in the smooth
setting this gives rise to an inner product on L2 differential forms,

〈ω, φ〉 =

∫
M

ω ∧ ∗β,

which gives L2Ωj(M) the structure of a Hilbert space.
Given ω ∈ L2Ωj(M) and φ ∈ L2Ωj+1(M), we say that φ = dω (weakly) if in each coordi-

nate chart, U , for every smooth differential form of compact support, β ∈ C∞c Ωm−(j+1)(U),
we have ∫

Rm
ω ∧ dβ = (−1)j+1

∫
Rm

φ ∧ β.

This relation is unchanged by coordinate changes because the usual relation f ∗dα = d(f ∗α)
holds when f is a Lipschitz map between relatively compact open subsets of Rm and the
coefficients of α and dα are measurable functions2. It is easy an easy exercise to see that the
square of the exterior derivative, computed weakly, vanishes.

Let

Dmax(d)j = {ω ∈ L2Ωj(M) : dω ∈ L2Ωj+1(M)}
denote the L2 differential forms of degree j whose exterior derivative is also an L2 differential
form. We have a complex of vector spaces,

0 −→ Dmax(d)0
d−−→ Dmax(d)1

d−−→ . . .
d−−→ Dmax(d)m −→ 0,

and corresponding homology groups

Hj(Dmax(d)•, d) =
Ker

(
Dmax(d)j

d−−→ Dmax(d)j+1

)
Im
(
Dmax(d)j−1

d−−→ Dmax(d)j

) .
To identify these groups with the singular cohomology of M it is convenient to use sheaves.

We define a pre-sheaf on M by assigning to each open set U ⊆M the vector space

Dmax(d;U) = {ω ∈ L2Ωj(U) : dω ∈ L2Ωj+1(U)}

and assigning to each inclusion j : V ↪→ U of open sets the restriction map

j∗ : Dmax(d;U) −→ Dmax(d;V)

This presheaf is filtered by differential form degree and the exterior derivative makes it into a
complex of presheaves. We sheafify and denote the corresponding sheaf complex by L2

maxΩ
•.

Since we have a Poincaré Lemma3 the complex of sheaves

0 −→ RM −→ L2
maxΩ

0 −→ L2
maxΩ

1 −→ . . .

is exact and is a soft resolution of the constant sheaf RM . It follows that the sheaf cohomol-
ogy is the singular cohomology with R coefficients.

2This is established in Theorem 9C of Geometric Integration Theory by Hassler Whitney.
3As explained below, on a smooth manifold the L2-cohomology can be computed using a subcomplex of

smooth differential forms. Thus if U is a coordinate chart we can compute the L2-cohomology of U using
smooth differential forms, and these satisfy the usual Poincare Lemma.
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1.2. Hilbert complexes. This mix of homological algebra and functional analysis is use-
fully framed as follows4.

Definition 1. Let N ∈ N. A Hilbert complex of length N consists of Hilbert spaces, Hj,
j ∈ {0, . . . , N}, with HN+1 = {0}, closed5, densely defined operators

Dj : Hj −→ Hj+1, j ∈ {0, . . . , N − 1},
with domain Dj = D(Dj) and range Rj ⊆ Hj+1 satisfying

Rj ⊆ Dj+1 and Dj+1 ◦Dj = 0.

We denote this by

0 −→ D0
D0−−−→ D1

D1−−−→ . . .
DN−1−−−−−→ DN −→ 0

when the rest of the data are understood.

If the ranges Rj are all closed and the homology groups

Hj((D•, D•)) =
Ker

(
Dj

Dj−−−→ Dj+1

)
Im
(
Dj−1

Dj−1−−−−→ Dj
)

are all finite dimensional, we say that the Hilbert complex is a Fredholm complex.

Every Riemannian manifold, (M, g), compact or not, gives rise to a Hilbert complex with
Hj = L2Ωj(M), Dj = d and

Dj = {ω ∈ L2Ωj(M) : dω ∈ L2Ωj+1(M)} = Dmax(d)j

known as the maximal domain of d. The cohomology of this Hilbert complex is the L2-
cohomology of (M, g) and is denoted

Hj
L2(M, g).

We also define the reduced L2-cohomology of (M, g) to be the groups

H
j

L2(M, g) =
Ker

(
Dmax(d)j

d−−→ Dmax(d)j+1

)
Im
(
Dmax(d)j−1

d−−→ Dmax(d)j

)
obtained as the quotient of the kernel of d by the closure of the image of d. While this is not
the cohomology of a Hilbert complex, it is closely related to harmonic forms as we will soon
see. Moreover if the L2-cohomology does not coincide with the reduced L2-cohomology then
the former is necessarily infinite dimensional.

If (M, g) is a smooth Riemannian manifold, as we assume from now on, it has another
canonical Hilbert complex. The minimal closed extension of d is the exterior derivative
endowed with the domains

Dmin(d)j = {ω ∈ L2Ωj(M) : ∃(ωn) ⊆ C∞c Ωj(M) s.t. ωn → ω and dωn is L2-Cauchy}.

4We follow “Hilbert Complexes” by Jochen Brüning and Matthias Lesch.
5An operator is closed if its graph is a closed subset of the product.
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It is easy to see that each (d,Dmin(d)j) is a closed operator and that they make up a Hilbert
complex.

The L2-cohomology of a Riemannian manifold only depends on g through the induced
spaces of L2-differential forms, so it is invariant under any change of metric that does not
change the L2 spaces.

Theorem 1.1. If g and g′ are Riemannian metrics on a manifold M and there is a constant
C such that

Cg ≤ g′ ≤ C−1g

then the maximal and minimal domains of d on (M, g) and (M, g′) coincide. In particular
so does the L2-cohomology and reduced L2-cohomology.

Two metrics satisfying the condition in the theorem are said to be quasi-isometric.

1.3. Ideal boundary conditions. If (M, g) is a compact Riemannian manifold with bound-
ary then one can show6 that the cohomology of the Hilbert complex of the minimal closed
extension gives the cohomology of M relative to its boundary, and the cohomology of the
Hilbert complex of the maximal extension gives the absolute cohomology of M,

Hj((Dmin(d)•, d)) ∼= Hj(M,∂M), Hj((Dmax(d)•, d)) = Hj
L2(M, g) ∼= Hj(M).

Because of this example, and following nomenclature of Cheeger for spaces with isolated
conic singularities, any Hilbert complex with Hj = L2Ωj(M) and (Dj,Dj) an extension of
(C∞c Ωj(M), d) is known as a choice of ideal boundary conditions. If Dmin(d) = Dmax(d)
we say that M has negligible boundary (following Gafney) or that the L2-Stokes the-
orem holds on M (following Cheeger).

The main example of spaces with negligible boundary are complete manifolds. To prove
this we recall the following characterization of complete manifolds.

Lemma 1.2 (Gordon, de Rham, Borel). A smooth Riemannian manifold M is complete

if and only if there is a smooth proper function M
µ−→ [0,∞) whose gradient is uniformly

bounded.

Proof. If M is complete and p ∈ M , note that the distance to p is a proper function,
differentiable almost everywhere and with gradient of length one. We obtain µ by smoothing
out d(p, ·). Another approach with more machinery is to use the Nash embedding theorem
to find an isometric embedding J : M → RN . Then completeness of M is equivalent to
properness of J . Define F : RN → R by F (ζ) = log(1 + |ζ|2) so that F is proper, smooth,
and has gradient of length bounded by one, and note that the same is true for µ = F ◦ J .

Conversely, given such a function, let γ : J ⊆ R→M be a geodesic segment parametrized
by arclength. If the length of γ is finite then, since |γ̇| = 1, the variation of µ ◦ γ on J is
bounded. Because µ is proper this implies that the range of γ is contained in a compact
subset of M and hence can be extended at both ends. Hence M is complete. �

Theorem 1.3 (Gaffney). Let M be a complete Riemannian manifold, and consider a first
order differential operator D ∈ Diff1(M ;E,F ) satisfying |σ(D)(ζ, ξ)| ≤ C(1 + |ξ|) uniformly
on M , then

6For example, it follows from an easier version of what we cover in the second lecture.
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a) Dmin(D) = Dmax(D),
b) Dmin(D∗D) = Dmax(D∗D), hence D∗D is essentially self-adjoint.

Beyond the exterior derivative d, this also applies to the formal7 adjoint of d, δ, any
covariant derivative ∇, and more generally any ‘Dirac-type’ operator ð. Applying part (b)
to the operator D = d+ δ shows that the Hodge Laplacian is essentially self-adjoint.

Proof.
[a)] We need to show thatDmax(D) ⊆ Dmin(D), so we fix u ∈ Dmax(D) ⊆ H1

loc(M) and we will
find a sequence (uj) ⊆ D(D) such that uj → u and Duj → Du in L2. Fix χ ∈ C∞(R; [0, 1])
such that

χ(t) =

{
1 if t ≤ 0

0 if t ≥ 1

and define χj(q) = χ(µ(q)− j), so that

χj(q) =

{
1 if µ(q) ≤ j

0 if µ(q) ≥ j + 1

Notice that we can find C > 0 such that |χj| ≤ C independently of j. Define uj = χju and
note that uj → u and

Duj = D(χju) = χjDu+ [D,χj]u = χjDu+ σ(D)(·, dχj)u

Clearly the first term on the right converges to Du. The second term converges pointwise to
zero, since [D,χj] is supported in µ−1([j, j + 1]), and its pointwise norm is bounded above
by C|u|E, hence by Lebesgue dominated convergence it converges to zero in L2(M,F ).

[b)] Our strategy is to find an expression for D·(D∗D) in terms of the domains of D and
D∗ (both of which satisfy (a) ). Let u ∈ L2(M,E) be an element of Dmax(D∗D) and denote
χj+1u by uj+1, note that

〈χ2
ju,D

∗Du〉 = 〈χ2
juj+1, D

∗D(uj+1)〉

since χj+1 is identically equal to one on the support of χj. For any φ ∈ C∞c (M) we know
that φu is a compactly supported element of H2

loc(M ;E) and hence is in the domain of both
D∗ and D. It follows that

〈χ2
juj+1, D

∗D(uj+1)〉 = 〈D(χ2
juj+1), D(uj+1)〉

= 〈χ2
jD(uj+1) + 2χjσ(D)(dχj)uj+1, D(uj+1)〉

= 〈χjD(uj+1), χjD(uj+1)〉+ 〈2χjσ(D)(dχj)uj+1, D(uj+1)〉.

7By ‘formal’ adjoint of d we mean the differential operator δ satisfying

〈dω, φ〉 = 〈ω, δφ〉

whenever ω and φ are smooth forms of compact support. The ‘formal’ moniker is used because the domain
C∞c Ω∗(M) is not a closed domain in L2Ω∗(M). In contrast, examples of adjoints include

(d,Dmax(d))∗ = (δ,Dmin(δ)), (d,Dmin(d))∗ = (δ,Dmax(δ)),

where the minimal and maximal domains of δ are defined analogously to those of d.
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However, it is easy to see that

〈2χjσ(D)uj+1, D(uj+1)〉 ≥ −‖χjD(uj+1)‖‖2σ(D)uj+1‖

=
1

2

[
(‖χjD(uj+1)‖ − ‖2σ(D)uj+1‖)2 − ‖χjD(uj+1)‖2 − ‖2σ(D)uj+1‖2

]
≥ −1

2
‖χjD(uj+1)‖2 − C ′‖uj+1‖2,

for some C ′ > 0, and we can conclude that

1

2
‖χjD(uj+1)‖2 ≤ C ′‖uj+1‖2 + 〈χ2

juj+1, D
∗D(uj+1)〉

≤ C ′‖u‖2 + 〈u,D∗Du〉.

It follows that Du ∈ L2(M,F ) and D∗(Du) ∈ L2(M,E), i.e.,

Dmax(D∗D) =
{
u ∈ L2(M,E) : u ∈ Dmax(D) and Du ∈ Dmax(D∗)

}
.

Now consider u ∈ Dmin(D∗D). Choose uj ∈ C∞c (M,E) such that both uj and D∗Duj
converge in L2(M,E). Notice that

‖Duj −Duk‖2 = 〈D∗D(uj − uk), uj − uk〉 → 0,

i.e., Duj converges in L2(M,F ) and hence u ∈ Dmin(D). Convergence of D∗(Duj) shows
that Du ∈ Dmin(D∗) and hence

Dmin(D∗D) =
{
u ∈ L2(M,E) : u ∈ Dmin(D) and Du ∈ Dmin(D∗)

}
.

By part (a), Dmin(D∗D) = Dmax(D∗D).
�

If D is an operator covered by Gaffney’s theorem, and u, v ∈ D(D∗D), then

〈D∗Du, v〉 = 〈Du,Dv〉.

In particular, for the Hodge Laplacian on k-forms on a complete manifold, this implies that

〈∆ω, η〉 = 〈(d+ δ)ω, (d+ δ)ω〉 = 〈dω, dη〉+ 〈δω, δη〉.

In particular harmonic forms coincide with forms that are closed and co-closed, i.e.,

Ker(∆) = Ker(d) ∩Ker(δ).

Among incomplete manifolds there is often a topological condition required for L2 Stokes
theorem to hold. For a Riemannian space with an isolated conic singularity with link Z,
Cheeger pointed out that the topological condition is that HdimZ/2(Z) = 0, if dimZ is even.
This is called the ‘Witt condition’.
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1.4. Kodaira decomposition. Every Hilbert complex (D•, D•) has a natural dual complex.
Indeed, the adjoint operators

D∗j : D(D∗j ) ⊆ Hj+1 −→ Hj

are closed and densely defined with domain

D(D∗j ) = {ω ∈ Hj+1 : Hj 3 α 7→ 〈Djα, ω〉 ∈ C is bounded}
and satisfy

R∗j ⊆ D∗j−1, D∗j−1 ◦D∗j = 0.

The corresponding Hilbert complex is

0←− D∗−1

D∗0←−−− D∗0
D∗1←−−− . . .

D∗N−1←−−−−− D∗N−1 ←− 0.

The Hodge cohomology groups of a Hilbert complex (D•, D•) are the vector spaces

Hj = Hj((D•, D•)) = KerDj ∩KerD∗j−1, j ∈ {0, . . . , N}.
The Hodge cohomology groups of the dual complex are the same up to re-indexing

Hj((D•, D•)) = HN−j((D∗•, D∗•))

Theorem 1.4. (Weak Kodaira decomposition) Let (D•, D•) be a Hilbert complex. For each
j there is an orthogonal decomposition

Hj = Hj ⊕Rj−1 ⊕R∗j
Proof. Since (Dj,D(Dj)) is a closed operator we have

KerDj = KerDj, (KerDj)
⊥ = Im(D∗j ,D(D∗j )) = R∗j .

Thus we can write Hj = R∗j ⊕KerDj and then further decompose

Hj = R∗j ⊕Rj−1 ⊕KerDj ∩KerD∗j−1.

�

In particular it follows that for any Hilbert complex

(KerDj)/(Rj) ∼= KerDj ∩KerD∗j−1.

For a Riemannian manifold, we define the L2-Hodge cohomology groups to be

Hj
L2(M) = {ω ∈ L2Ωj(M) : dω = 0 = δω}.

Corollary 1.5. Let (M, g) be a Riemannian manifold. There is a natural surjective map
from the L2-harmonic forms onto the reduced L2-cohomology (or indeed, the reduced coho-
mology for any choice of ideal boundary conditions),

Hj
L2(M) ∼= ker(d,Dmax(d))∩ker(δ,Dmax(δ)) −→ H

j

L2(M) ∼= ker(d,Dmax(d))∩ker(δ,Dmin(δ)).

If M has negligible boundary then this map is an isomorphism.

We can also consider the space of L2-harmonic forms. The Hodge Laplacian is the operator
on j-forms given by dδ+ δd and the L2-harmonic forms are the elements of its distributional
null space,

Ker(∆j,Dmax(∆j)) = {ω ∈ L2Ωj(M) : (dδ + δd)ω = 0}.
The L2-harmonic forms contain the L2-Hodge cohomology but are usually larger. For exam-
ple, if M is equal to the unit interval, M = (0, 1), then the zeroth Hodge cohomology group
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consists of all constant functions while the harmonic functions are the polynomials of degree
at most one.

1.5. Smooth subcomplex. 8 Elliptic regularity shows that L2-harmonic forms are smooth.
In fact the L2-cohomology can always be computed using a subcomplex of smooth forms.
One way of showing this, by mollification, goes back to de Rham9. Here is an approach that
works for all Hilbert complexes.

Theorem 1.6. Let (D•, D•) be a Hilbert complex with corresponding domain for the Hodge
Laplacian,

D(∆j) = {ω ∈ Hj ∩ Dj ∩ D∗j−1 : dω ∈ D∗j and δω ∈ Dj+1},
and define recursively

D(∆k
j ) = {ω ∈ D(∆j) : ∆jω ∈ D(∆k−1

j )}, D(∆∞j ) =
⋂
D(∆k

j ).

The Hilbert complex restricts to these subspaces to form a subcomplex and the inclusion map
induces isomorphisms in cohomology.

Proof. Since (∆j,D(∆j)) is a non-negative self-adjoint operator, the spectral theorem allows
us to write it as an integral over R+ with respect to its spectral measure, ∆ =

∫∞
0
λ dEλ.

Given any ω ∈ D(∆j), we define

ωn = (

∫ n

0

dEλ)ω

and find that ωn ∈ D(∆∞j ), and ωn → ω in the graph norm. Thus D(∆∞j ) is a ‘core’ for
D(∆j).

Both Dj and D∗j commute with any power of the Hodge Laplacian, so they both preserve
D(∆∞j ) and restriction yields a subcomplex.

Let φ ∈ C∞c (R) be equal to one near zero, and let

Aj = −D∗j−1(∆j + id)−1

(
id +

∫ ∞
0

φ(t)e−t∆ dt

)
.

One can show that
Aj : Dj −→ Dj−1, Aj : D(∆∞j ) −→ D(∆∞j )

and that the inclusion of D(∆∞j ) is equal to id +Dj−1Aj + Aj+1Dj. Hence the subcomplex
has the same homology as the full complex. �

2. Lecture Two: A de Rham theoretic approach

In this lecture we consider some examples, both complete and singular. The results in
this section are due to Cheeger, Zucker, Hausel, Hunsicker, Mazzeo, and Bei, sometimes in
collaboration.

Reference recommendation for this lecture:

• Jeff Cheeger, ‘On the Hodge theory of Riemannian pseudomanifolds’,

8In this section we follow Brüning-Lesch, ‘Hilbert complexes’.
9De Rham, Variétés différentiables, pg. 72-82. See also the Appendix of ‘On the Hodge Theory of

Riemannian pseudomanifolds’ by Jeff Cheeger.
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• Francesco Bei, ‘General perversities and L2 de Rham and Hodge theorems for strat-
ified pseudomanifolds’,
• Boris Youssin, ‘Lp cohomology of cones and horns”,

Often properties of de Rham cohomology continue to hold in L2 cohomology with extra
functional analytic hypotheses. For example:

Proposition 2.1 (Künneth formula). 10 Let (H ′•, D
′
•) and (H ′′• , D

′′
•) be two Hilbert complexes.

Form the completed tensor product Hilbert complex (H•, D•) where

Hk =
⊕
i+j=k

H ′i⊗̂H ′′j , Dk =
⊕
i+j=k

(D′i ⊗ idH′′j +(−1)i idH′i ⊗D
′′
j ).

Assume that D′′∗ has closed range in all degrees, then

Hk(H•, D•) =
⊕
i+j=k

Hi(H ′•, D
′
•)⊗ Hj(H ′′• , D

′′
•).

In this lecture we will see another instance: the de Rham cohomology of Z × (0, 1) is
isomorphic to the de Rham cohomology of Z. We can sort of make this work in L2 cohomology
in some cases but the L2-condition gives it a different character.

2.1. Wedge and fibered cusp metrics. Historically, L2-cohomology was introduced inde-
pendently by Cheeger and Zucker. Cheeger11 was interested in stratified spaces and metrics
with conic degeneration. For a simple example consider M, the interior of a manifold with
boundary, and assume that the boundary of M participates in a fiber bundle,

Z − ∂M φ−−→ Y.

Fix a collar neighborhood C (∂M) ∼= [0, 1)×∂M of ∂M in M, and denote the trivial extension
of φ to C (∂M) by the same symbol, φ. A wedge metric on M is one that in C (∂M) takes
the form

gw = dx2 + x2gZ + φ∗gY ,

where x is a boundary defining function, gZ is a bundle metric for the vertical tangent bundle
T∂M/Y, and gY is a Riemannian metric on Y pulled-back after the choice of a connection
for φ. Note that this metric has the effect of collapsing each of the fibers of φ to a point at
x = 0. If Y is a point, this corresponds to an isolated conic singularity; if Z is a point, this
corresponds to a smooth incomplete metric on a manifold with boundary.

Zucker12 was interested in complete manifolds of finite volume with ends like hyperbolic
cusps. A generalization, which includes the end of most locally symmetric spaces of Q-rank
one, is a metric on M as above that in a collar neighborhood of ∂M takes the form

gd =
dx2

x2
+ x2gZ + φ∗gY .

Note that this metric also has the effect of collapsing the fibers of φ to a point, but the de-
nominator x2 in the first term shows that the collapse happens ‘at infinity’. If Y is a point,
this corresponds to a complete manifold with finite volume and cusp ends, such as those

10See Brüning-Lesch, ‘Hilbert complexes’.
11 Jeff Cheeger, ‘On the spectral geometry of spaces with cone-like singularities’
12Steven Zucker, ‘Théorie de Hodge à coefficients dégénérescents’
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occuring in hyperbolic geometry; if Z is a point, this corresponds to a complete manifold
with cylindrical ends.

It is convenient to allow the Hilbert spaces to be weighted L2 spaces of differential forms.
For α ∈ R consider

Dmax,α(d) = {ω ∈ xαL2Ωj(M) : dω ∈ xαL2Ωj+1(M)},
the associated Hilbert complex

0 −→ Dmax,α(d)0
d−−→ Dmax,α(d)1

d−−→ . . .
d−−→ Dmax,α(d)m −→ 0,

and the corresponding homology groups

Hj(Dmax,α(d)•, d) = Hj
xαL2(M, g).

Part of the computation will be true for both metrics and more generally, so let us start
by considering a metric on M that in a collar neighborhood has the form

g = gβ,γ =
dx2

x2β
+ x2γgZ + φ∗gY ,

we will restrict α, β, γ so that we are in the simplest setting13, but this is not essential.

Remark 1. As an exercise14, consider the case of b-metrics: M is (the interior of) a mani-

fold with boundary and the metric has the form gb = dx2

x2
+ g∂M near the boundary. Elements

of xαL2Ωj(M) for α > 0 have some degree of vanishing at ∂M and the xαL2-cohomology is
equal to the singular cohomology of M relative to its boundary,

Hj
xαL2(M, gb) = Hj(M,∂M) if α > 0.

Analogously, or rather ‘dually’, negative weights yield the absolute singular cohomology,

Hj
xαL2(M, gb) = Hj(M) if α < 0.

In the last remaining case, α = 0, the image of d is not closed and so the L2-cohomology
is infinite dimensional. The reduced cohomology in this case is the image of relative into
absolute,

H
j

L2(M, gb) = Image
(
Hj(M,∂M) −→ Hj(M)

)
.

This lack of closed range is one of the issues we avoid below by placing restrictions on α, β, γ.

An important simplification in computing the weighted L2 cohomology of (M, gβ,γ) is to
identify it with the (hyper)cohomology of a sheaf complex. It turns out to be natural to

work on the singular space associated to M, M̂. This is the metric compactification of M
with the wedge metric; it is obtained by collapsing the fibers of the boundary fibration. We
define a complex of sheaves on M from the presheaf that assigns to each open set U ⊆ M
the vector space

Dmax,α(d;U) = {ω ∈ Dmax,α(d) : suppω ⊆ U ∩M}
and to each inclusion j : V ↪→ U the restriction map. We sheafify and denote the corre-
sponding sheaf complex by L2

max,αΩ
•.

13Specifically, we will assume that β − 1 ≤ 0 < γ and that p = v
2 + 1−2α−β

2γ is not an integer in [0,m].
14To see this worked out, see Proposition 6.13 of The Atiyah-Patodi-Singer index theorem by Richard

Melrose.
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It is important that these sheaves are fine. To see this it suffices to construct a partition
of unity using the functions

C∞Φ (M) = {u ∈ C∞(M) : u
∣∣
∂M
∈ φ∗C∞(Y )}.

Indeed, if u ∈ C∞Φ (M) then |du| is bounded and so multiplication by u preserves Dmax,α(d).
It follows that the sheaf cohomology is determined by the stalk cohomology and in turn

this is determined by the cohomology of ‘distinguished neighborhoods’15. Each neighborhood
has the form Bh × (0, 1)× Z and since we may change the metric within its quasi-isometry
class, we may assume that it is the product of the Euclidean metric on the ball and a
metric x−2βdx2 + x2γgZ , wherein gZ is the same on each fiber of Z, over Bh. A Künneth-
type argument16 shows that the cohomology of this neighborhood is isomorphic to the L2-
cohomology of (0, 1)× Z.

2.2. L2-cohomology of a horn/cusp metric. 17

Consider then C (Z) = (0, 1)× Z with the metric

dx2

x2β
+ x2γgZ

for some fixed metric gZ on Z. We want to compute the xαL2-cohomology. As pointed out
above we obtain the same cohomology by using differential forms that are smooth on C (Z),
and since the metric is not singular at x = 1 a standard mollification argument shows that
we can use forms that are smooth up to x = 1,

D∞max,α(d)j = {ω ∈ C∞((0, 1]× Z; ΛjT ∗C (Z)) : ω, dω ∈ xαL2(C (Z); Λ∗T ∗C (Z))}.
A consequence of the construction in this section is that in some cases we can further restrict
to forms that are smooth on all of C (Z) = [0, 1]× Z,

D∞max,α(d)j = {ω ∈ C∞(C (Z); ΛjT ∗C (Z)) : ω, dω ∈ xαL2(C (Z); Λ∗T ∗C (Z))},
in which case the cohomology is easy to identify.

Let us start by considering smooth differential forms without worrying about the L2-
condition. For any a ∈ (0, 1), consider the map18

Ta : C∞(C (Z); ΛjT ∗C (Z)) −→ C∞(C (Z); Λj−1T ∗C (Z)), (Taω)(x, ζ) =

∫ x

a

i∂xω(t, ζ) dt,

i.e., in terms of the decomposition of ω as ω = ωt + dx ∧ ωn, Ta is integration of ωn. Note
that

(2.1) (dTaω + Tadω)(x, ζ) = ω(x, ζ)− π∗aωt(ζ),

where π∗aωt(ζ) = ωt(a, ζ), and hence the complex of smooth differential forms is quasi-
isomorphic to the complex of smooth forms on Z pulled-back from {a} × Z, and so are in

15These neighborhoods arise naturally when considering the stratified space M̂. Just as points on a smooth
manifold are required to have a neighborhood that looks like an open ball in Rm, points on stratified spaces
have neighborhoods that look like an open ball in Rh (a coordinate chart on Y, the singular stratum), times
the cone over another space, so Bh × C(Z). The intersection with the regular part is thus Bh × (0, 1)× Z.

16Proposition 2.1 works with (H ′′• , D•) the Hilbert complex for the L2-cohomology of Bh. We know that
the closed range condition holds because the L2-cohomology is finite dimensional.

17Our approach follows Cheeger, Youssin, Bei.
18We use T for ‘transgression’.
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particular smooth on C (Z).

When will these maps be bounded in xαL2?

If ω ∈ D∞max,α(d)j, then the pointwise norm of ω is given by

|ω|2g(x,ζ) = x−2jγ|ωt|2g(1,ζ) + x2βx−2(j−1)γ|ωn|2g(1,ζ)
and we get the xαL2 norm squared by integrating against x−2α times the volume form

(2.2)

∫
C (Z)

|ω|2g(x,p) xvγx−βx−2αdx dvolZ

=

∫ 1

0

(
xγ(v−2j)−β−2α‖ωt(x)‖2

1 + xγ(v−2(j−1))+β−2α‖ωn(x)‖2
1

)
dx.

The vertical degree of Taω coincides with that of ωn, so is equal to j−1, and its xαL2-norm
satisfies

‖Taω‖2
xαL2 =

∫ 1

0

xγ(v−2(j−1))−β−2α‖Taω‖2
1 dx ≤

∫ 1

0

xγ(v−2(j−1))−β−2α

∣∣∣∣∫ x

a

‖ωn(t)‖1 dt

∣∣∣∣2 dx
Lemma 2.2. 19 Let f(r) ∈ L2((0, 1);xµ dx).

i) If µ < −1 then x 7→
∫ x

0

f(t) dt is in L2((0, 1);xµ dx).

ii) If µ ≥ −1 then x 7→
∫ x

1

f(t) dt is in L2((0, 1);xµ dx).

In either case the map f 7→
∫ x
a
f(t) dt is a bounded map.

Proof. i) For any positive function λ, we have∣∣∣∣∫ x

0

f(t) dt

∣∣∣∣2 ≤ (∫ x

0

λ(s) ds

)(∫ x

0

f(t)2

λ(t)
dt

)
,

hence ∫ 1

0

∣∣∣∣∫ x

0

f(t) dt

∣∣∣∣2 xµ dx ≤ ∫ 1

0

(∫ x

0

λ(s) ds

)
xµ
(∫ x

0

f(t)2

λ(t)
dt

)
dx

=

∫ 1

0

f(t)2

λ(t)

∫ 1

t

(∫ x

0

λ(s) ds

)
xµ dxdt

and we see that it suffices to find a positive function λ such that

1

tµλ(t)

∫ 1

t

(∫ x

0

λ(s) ds

)
xµ dx is bounded.

Since µ < −1 we can find ε ∈ (2, 1− µ) and consider λ(t) = t−µ−ε which yields

tε
∫ 1

t

(∫ x

0

s−µ−ε ds

)
xµ dx = tε

∫ 1

t

1

1− µ− ε
x−ε+1 dx =

1

(1− µ− ε)(2− ε)
(tε − t2)

19Following Proposition 3.39 of L2 Cohomology of Warped Products and Arithmetic Groups by Steven
Zucker.
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which is bounded.
ii) Similar reasoning shows that is suffices to find a positive function λ such that

1

tµλ(t)

∫ t

0

(∫ x

1

λ(s) ds

)
xµ dx is bounded.

For µ > −1 we can take λ(t) = t−µ−ε with ε ∈ (1 − µ, 2), and for µ = −1 we can take
λ(t) = t−1 log−ε t for any ε ∈ (1, 2). �

Next let us combine this with (2.2). Let

(2.3) p = p(α, β, γ) =
v

2
+

1− 2α− β
2γ

.

Lemma 2.3.
a) If ω ∈ D∞max,α(d)j then π∗1ω, the pull-back of its restriction to {x = 1}, will be in xαL2

if and only if
γ(v − 2j)− β − 2α > −1 ⇐⇒ k < p.

b) If ω ∈ D∞max,α(d)j, so that ωn has degree j − 1, then{
j − 1 ≤ p =⇒ T1ω ∈ L2Ω∗(M)

j − 1 > p =⇒ T0ω ∈ L2Ω∗(M)

We are now in good shape to apply the formula (2.1) to forms with vertical degree less
than p. For forms of larger vertical degree we need to deal with the fact that the pull-back
is not an L2 differential form. We do this by approximating T0 as follows20.

Let Kε : (0, 1] −→ (0,Kε(1)], ε > 0, be a one-parameter family of diffeomorphisms such
that 0 < Kε(x) ≤ x and Kε(1)→ 0 as ε→ 0. Let

T̃ε : C∞(C (Z); ΛkT ∗C (Z)) −→ C∞(C (Z); Λk−1T ∗C (Z)), (T̃εω)(x, ζ) =

∫ x

Kε(x)

i∂xω(t, ζ) dt.

Analyzing this as above yields the following:

Lemma 2.4. If ω ∈ D∞max,α(d) then, as smooth forms on C (Z),

(dT̃εω + T̃εdω)(x, p) = ω −K∗εω,
where K∗εω denotes the pull-back by the map induced by Kε on C (∂M).

If moreover ωn = i∂xω is an L2 differential form of degree greater than p, then

‖T̃εω − T0ω‖L2 → 0 as ε→ 0.

Choosing Kε carefully lets us easily analyze the remainder term K∗εω.

Lemma 2.5. Let ω ∈ D∞max,α(d)j with

j > p+ 1, j ≥ v + 1

2
− α

γ
,

then, as ε→ 0,

K∗εω → 0, T̃εω → T0ω in xαL2.

It follows that
(dT0 + T0d)ω = ω.

20We argue as in §5 of Lp cohomology of cones and horns by Boris Youssin.
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Proof. By assumption j > p is such that

u(x) =

∫ x

1

tγ(v−2kt)−β−2α dt

diverges as x→ 0, so u takes (0, 1) to (−∞, 0).
Pulling ω back to (−∞, 0) by the inverse of u yields

ωt(x(u), ζ) +
du

(x(u))γ(v−2j)−β−2α
∧ ωn(x(u), ζ)

which we denote ωt + du ∧ ω̃n. The xαL2 norm in terms of du is given by

‖ω‖2
xαL2 =

∫ 1

0

(
xγ(v−2j)−β−2α‖ωt(x)‖2

1 + xγ(v−2(j−1))+β−2α‖ωn(x)‖2
1

)
dx

du=xγ(v−2j)−β−2α dx−−−−−−−−−−−−−−→
∫ 0

−∞

(
‖ωt(x(u))‖2

1 + x(u)2γ+2β‖ωn(x(u))‖2
1

)
du

=

∫ 0

−∞

(
‖ωt(x(u))‖2

1 + x(u)2γ(v−(2j−1))−4α‖ω̃n(x(u))‖2
1

)
du.

For ε ∈ (0, 1), define Kε : (−∞, 0] −→ (−∞,−1
ε
] by Kε(u) = u − 1

ε
. By assumption

2γ(v− (2j− 1))− 4α ≤ 0 so K∗ε(x(u)2γ(v−(2j−1))−4α) ≥ x(u)2γ(v−(2j−1))−4α and the xαL2 norm
of K∗εω satisfies

‖K∗εω‖2
xαL2 =

∫ 0

−∞

(
‖K∗εωt(x(u))‖2

1 + x(u)2γ(v−(2j−1))−4α‖K∗εω̃n(x(u))‖2
1

)
du

≤
∫ 0

−∞

(
‖K∗εωt(x(u))‖2

1 +K∗εx(u)2γ(v−(2j−1))−4α‖K∗εω̃n(x(u))‖2
1

)
du

=

∫ −1/ε

−∞

(
‖ωt(x(u))‖2

1 + x(u)2γ(v−(2j−1))−4α‖ω̃n(x(u))‖2
1

)
du.

Comparing this to the xαL2-norm of ω we see that

‖K∗εω‖2
xαL2 → 0 as ε→ 0.

On {x > δ} for any δ > 0 we have (Tεd+ dTε)(ω) = ω − χK∗εω and we have shown that

K∗εω → ω, Tεω → T0ω.

The form (dω)n also has degree greater than p and hence

Tεdω → T0dω.

It follows that

dTεω = ω − χK∗εω − Tεdω → ω − T0dω,

so that T0ω ∈ Dmax(d) with dT0ω = ω − T0dω. �

Finally, let us consider what happens when j − 1 ≤ p < j.

Lemma 2.6. Let j ∈ N0 be such that p ∈ [j − 1, j) and assume that

Im (d : Dmax(dZ)j−1 −→ Dmax(dZ)j) is closed.

If ω ∈ D∞max,α(d)j then there is a form φ ∈ D∞max(dZ)j−1 such that d(π∗1φ+ T1ω) + T0dω = ω
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Proof. On {x > δ} for any δ > 0, since dω = dωt + dx ∧ (∂xωt − dZωn), we have

T̃εdω(x, ζ) = ωt(x, ζ)− ωt(Kε(x), ζ)−
∫ x

Kε(1)

dZωn(t, ζ) dt.

The argument in the proof of Lemma 2.5 shows that K∗εωt → 0 in xαL2 as ε → 0. (Note
that we do not need k ≥ v+1

2
− α

γ
to conclude that the tangential part of K∗εω → 0.) Since

the normal part of dω has degree greater than p, T̃εdω −→ T0dω. Thus we can take the limit
as ε→ 0 in the equality above to get

lim
ε→0

∫ x

Kε(1)

dZωn(t, ζ) dt = ωt(x, ζ)− T0dω(x, ζ).

Similarly,

dT1ω(x, ζ) = dx ∧ ωn(x, ζ) +

∫ x

1

dZωn(t, ζ) dt

and hence

(dT1ω + T0dω)(x, ζ) = ω(x, ζ)− lim
ε→0

∫ 1

Kε(1)

dZωn(t, ζ) dt.

By our assumption this limit is equal to dπ∗φ for some φ ∈ Dmax(dZ)j−1 �

We now add an assumption relating β and γ and put these results together to obtain the
L2-cohomology of C (Z).

Proposition 2.7. Let C (Z) = (0, 1)× Z with the metric

dx2

x2β
+ x2γgZ

and assume that β − 1 ≤ 0 < γ. Let p = v
2

+ 1−2α−β
2γ

and assume that p /∈ {0, 1, . . . ,m}. The

xαL2 cohomology of C (Z) is equal to

Hj
xαL2(C (Z)) =

{
Hj
L2(Z) if j < p

0 if j > p

Proof. If ω ∈ D∞max,α(d)j with j < p then, as smooth forms, we have the equality

(dT1 + T1d)(ω) = ω − π∗1ω.
Lemma 2.3 shows that T1dω and π∗1ω are smooth forms in xαL2Ωj(C ), and hence so is dT1ω.
This shows that Hj

xαL2(C (Z)) ∼= Hj
L2(Z).

If ω ∈ D∞max,α(d)j with j − 1 < p < j then Lemma 2.6 applies and shows that

ω = d(π∗1φ+ T1ω) + T0dω.

In particular, Hj
xαL2(C (Z)) = 0.

If ω ∈ D∞max,α(d)j with j > p + 1 then, since the assumption β − 1 ≤ 0 < γ guarantees

that p+ 1 > v+1
2
− α

γ
, we can apply Lemma 2.5 and see that

ω = (dT0 + T0d)ω.

In particular, Hj
xαL2(C (Z)) = 0. �
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2.3. Intersection cohomology. Let M be the interior of a manifold with fibered boundary

Z − ∂M φ−−→ Y. At the boundary we have the vertical tangent bundle

T∂M/Y = kerDφ

in terms of which we define the Cartan filtration:

F kΩ∗(∂M) = {ω ∈ Ω∗(∂M) : for all V1, . . . , Vk+1 ∈ C∞(∂M ;T∂M/Y ), iV1 · · · iVk+1
ω = 0}.

Thus F kΩ∗(∂M) consists of those forms on ∂M whose vertical degree is at most k.
Fix p ∈ Z and define

Ω∗p(M) = {ω ∈ Ω∗(M) : i∗∂Mω, i
∗
∂Mdω ∈ F pΩ∗(∂M)}.

This subcomplex of the de Rham complex was introduced by Brylinski-Goresky-MacPherson21

and its elements are known as intersection forms with p the perversity function. The
homology of this complex is known as the intersection cohomology of M with perversity
p and is denoted

IHj
p(M).

We can make a sheaf out of the intersection form complex much like we did for the L2-
cohomology. The ‘local computation’ in this context is much easier and yields

Hj(Ωp(Bh × [0, 1)× Z), d) =

{
Hj(Z) if j ≤ p

0 if j > p

Comparing this with our local computation above we have identified the xαL2 cohomology.

Theorem 2.8. Endow M with a Riemannian metric that near the boundary takes the form

g =
dx2

x2β
+ x2γgZ + φ∗gY

satisfying β − 1 ≤ 0 < γ. Let α ∈ R be such that p = v
2

+ 1−2α−β
2γ

/∈ {0, . . . ,m} and let p be

the largest integer smaller than p, then

Hj
xαL2(M, g) ∼= IHj

p(M).

3. Lecture Three: A Hodge theoretic approach

Suggested references for this lecture include:

• Tamas Hausel, Eugénie Hunsicker, and Rafe Mazzeo, ‘Hodge cohomology of gravita-
tional instantons’,
• Richard Melrose, The Atiyah-Patodi-Singer index theorem,
• Pierre Albin, ‘On the Hodge theory of stratified spaces’
• Jeff Cheeger, ‘On the spectral geometry of spaces with cone-like singularities’,
• Eugénie Hunsicker and Frédéric Rochon, ‘Weighted Hodge cohomology of iterated

fibred cusp metrics’,
• Francesco Bei, ‘General perversities and L2 de Rham and Hodge theorems for strat-

ified pseudomanifolds’

21Introduced in ‘Equivariant intersection cohomology’ by Jean-Luc Brylinski.
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3.1. Stratified spaces. The first thing to point out is that the natural setting for the
computation we did last lecture is stratified spaces. Examples of stratified spaces include
algebraic varieties, orbit spaces of group actions, and some natural compactifications of
moduli spaces and locally symmetric spaces22.

A stratified space23, X̂, is a topological space that is usually singular but is equal to a
union of smooth manifolds. We will assume that the space if compact for simplicity.

Every point on a stratified space has a ‘depth’ in N0. A point has depth zero if it has a
neighborhood homeomorphic (diffeomorphic) to a ball in Rm. If every point has depth zero,
then the stratified space is actually a smooth manifold. A point has depth one if it does
not have depth zero but instead small neighborhoods are homeomorphic to a Euclidean ball

times the cone over a smooth manifold, Bh × C(Z). The space Z is called the link of X̂ at
that point. We define the depth of a space to be the maximal depth among its points.

The space M̂ from the previous lecture has depth one. In general, a point has depth k if it
does not have depth k − 1 and small neighborhoods are homeomorphic to the product of a
Eulidean ball times the cone over a stratified space of depth k − 1.

That is the local picture of a stratified space. Globally, X̂ is a union of smooth manifolds,

called the strata of X̂, and we need to describe how they fit together. The points of depth

zero in X̂ make up the regular part of X̂, which we will denote X or X̂reg, this is a smooth

manifold (usually open) and is assumed to be dense in X̂. Any other stratum24 Y is referred

to as a singular stratum, and comes equipped with a neighborhood in X̂, TY , participating
in a fiber bundle,

C(Ẑ)− TY
φY−−−→ Y,

where the fiber is the cone over a stratified space Ẑ, known as the link of Y in X̂. (Ẑ is a

simpler stratified space than X̂, in that it has smaller depth.)

Remark 2. As an exercise, show that ‘the link of a link is a link’. That is, if p ∈ X̂ is a

singular point on a stratified space and Ẑ is the link of p in X̂, if q ∈ Ẑ is a singular point

and Ŵ is the link of q in Ẑ, then there is a point r ∈ X̂ whose link in X̂ is Ŵ .

3.2. The resolution of a stratified space. There is an algorithm, going back at least
as far as one of Thom’s papers on stratified spaces25, that resolves a stratified space into a

manifold with corners. In the case of depth one, this corresponds to replacing M̂ from the
previous lecture with M, a manifold with fibered boundary.

Our preferred way of thinking about the resolution is due to Richard Melrose26 and consists
of a manifold with corners with an iterated fibration structure.

22See, e.g., §2.1 of ‘On the Hodge theory of stratified spaces’ by P.A. .
23There are many notions of ‘stratified space’. A fun place to read about the various types is ‘Quelques

notions d’espaces stratifiés’ by Benôıt Kloeckner. We work with ‘smoothly stratified spaces’, also known as
Thom-Mather stratified spaces.

24We assume that dimY < dimX − 1. Spaces satisfying this condition are known as pseudomanifolds.
25Specifically, ‘Ensembles et Morphismes Stratifiés’ by René Thom.
26This is worked out in the equivariant setting in ‘Resolution of smooth group actions’ by P.A. and Richard

Melrose, and in the stratified setting in ‘The signature package on Witt spaces’ by P.A., Eric Leichtnam,
Rafe Mazzeo, and Paolo Piazza. A discussion can be found in §6 of ‘On the Hodge theory of stratified spaces’
by P.A. .
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An iterated fibration structure on X̃, a manifold with corners, consists of fiber bundles,

Z̃ −BY
φY−−−→ Ỹ ,

where the total space BY is a union of pairwise disjoint boundary hypersurfaces (a ‘collec-
tive boundary hypersurface’), and the base and fiber are both manifolds with corners.

Every boundary hypersurface of X̃ occurs in exactly one of these collective boundary hyper-
surfaces and the fiber bundles are required to satisfy a compatibility condition:
If BY ∩BY ′ 6= ∅, then

(1) dim Ỹ 6= dim Ỹ ′ and

(2) if dim Ỹ < dim Ỹ ′ then there is a collective boundary hypersurface BY Y ′ of Ỹ ′ and a

fiber bundle map BY Y ′
φY Y ′−−−−→ Ỹ such that the following diagram commutes,

BY ∩BY ′
φY ′ //

φY $$

BY Y ′

φY Y ′}}
Ỹ

The bases of the fiber bundles,

S(X̃) = {Ỹ }
are in one-to-one correspondence with the singular strata of the stratified space X̂. In fact

the closure of a singular stratum Y in X̂ is a stratified space Ŷ , and, as the notation is meant

to suggest, each Ỹ is the resolution of some Ŷ . Similarly, the fiber, Z̃, of the boundary fiber

bundle BY
φY−−−→ Ỹ , is the resolution of the link of Y in X̂. This highly iterative structure

lends itself naturally to inductive arguments.

The space X̃ is obtained from X̂ by iteratively blowing-up a stratum of maximal depth.

The singular space X̂ can be recovered from X̃ by collapsing the fibers of the boundary
fibrations in the appropriate order.

3.3. Intersection cohomology. As we did before, we define the intersection cohomology

directly on the resolved space. Fix a function p : S(X̃) −→ Z, known as a ‘perversity’27,
and define

Ω∗p(X̃) = {ω ∈ Ω∗(X̃) : for all Ỹ ∈ S(X̃), i∗BY ω, i
∗
BY
dω ∈ F p(Ỹ )Ω∗(BY )}.

This clearly forms a complex and its cohomology is known as the intersection cohomology

of X̃ (or X̂) with perversity p, denoted

IH∗p(X̃).

The results that we proved in the second lecture, and the proof, extend to stratified spaces.
Cheeger showed that for a wedge metric the L2 cohomology is an intersection cohomology,
and Bei proved this for horn metrics. Hunsicker and Rochon proved this for d-metrics28.

27A perversity is ‘classical’ if each p(Ỹ ) only depends on cod(Ỹ ) = dim X̃ − dim Ỹ , the codimension of

Ỹ , and both p(c) and q(c) = 2 − c − p(c) are non-negative and non-decreasing. For classical perversities,
Goresky and MacPherson showed that intersection homology is a topological invariant.

28See the references at the beginning of the lecture
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3.4. The need for a Hodge theoretic approach. There are (at least) two reasons why
it is useful to take a Hodge theoretic approach to go beyond what we have established so far.

The first reason we want to emphasize is Poincaré duality for L2-cohomology of incomplete
metrics.

Recall that on a closed orientable manifold, M, the intersection pairing of singular coho-
mology is realized at the level of differential forms by

Ω∗(M)× Ω∗(M)
(·,·)−−−→ R, (u, v) =

∫
M

u ∧ v.

This pairing is non-degenerate, since
∫
M
u ∧ ∗u = ‖u‖2

L2 . Stokes’ theorem guarantees that
the pairing of an exact form and a closed form vanishes, i.e.,

dv = 0 =⇒
∫
M

dw ∧ v =

∫
M

d(w ∧ v) = 0.

Thus this pairing descends to a non-degenerate pairing in cohomology. The signature of this
pairing is known as the signature of the manifold and is an important invariant in manifold
topology.

Notice that this fails when (M, g) is the restriction to the interior of a smooth Riemannian
manifold with boundary. In this case, if u, v ∈ Dmax(d) are smooth up to the boundary, with
u = dw and v closed, then we have∫

M

dw ∧ v =

∫
M

d(w ∧ v) =

∫
∂M

w ∧ v.

Thus the pairing does not descend to a non-degenerate pairing in cohomology. Of course, it
does descend to a pairing between the maximal cohomology and the minimal cohomology,

H∗((Dmax(d), d))× H∗((Dmin(d), d)) // R

([u], [v]) � //
∫
M
u ∧ v

,

because by approximating v with compactly supported forms we see that there is no bound-
ary term. This is the usual de Rham form of Poincaré-Lefschetz duality.

Now let (M, g) be an arbitrary Riemannian manifold. The intersection pairing is non-
degenerate on L2Ω∗(M, g) × L2Ω∗(M, g). Every choice of closed domain Dmin(d) ⊆ D(d) ⊆
Dmax(d) determines a second domain D(d)′ by

D(d)′ = {v ∈ Dmax(d) :

∫
M

d(u ∧ v) = 0 for all u ∈ D(d)}.

This is a dense subset of L2Ω∗(M) since it contains C∞c Ω∗(M), and we point out that it is a
closed domain for d. Indeed, if (v, w) is in the closure of the graph of (d,D(d)′) so that we
have

(vn, dvn) ∈ D(d)′ ×Dmax(d) s.t. vn → v, dvn → w

then w = dv because Dmax(d) is a closed domain and∫
M

d(u ∧ v) =

∫
M

du ∧ v ± u ∧ dv = lim

∫
M

du ∧ vn ± u ∧ dvn = lim

∫
M

d(u ∧ vn) = 0;
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thus v ∈ D(d)′ as required. Finally if (D(d), d) make up a Hilbert complex, i.e., if d(D(d)) ⊆
D(d), then so do (D(d)′, d) since whenever u ∈ D(d) we have∫

M

d(u ∧ v) = 0 =⇒
∫
M

d(u ∧ dv) = ±
∫
M

d(du ∧ v) = 0.

In this way, to each choice of ideal boundary conditions (D(d), d) we have assigned a ‘dual’
choice of ideal boundary conditions (D(d)′, d) through the intersection pairing.

We say that a choice of ideal boundary conditions is self-dual if

D(d) = D(d)′.

In this case, the intersection pairing descends to cohomology into a non-degenerate pairing
and we say that the complex satisfies Poincaré duality. A manifold has negligible bound-
ary or satisfies the L2-Stokes theorem precisely when the maximal domain is self-dual.

As mentioned in the first lecture, every Hilbert complex has an adjoint complex. Let us
see how the dual complex and the adjoint complex are related.

Recall that for every choice of ideal boundary conditions (D(d), d) there is a Hilbert
complex (D(δ), δ) with

D(δ) = {v ∈ Dmax(δ) : 〈du, v〉L2 = 〈u, δv〉L2 for all u ∈ D(d)}.
A useful framework for thinking about this is the ‘boundary pairing’,

Dmax(d)×Dmax(δ)
Gd // R

(u, v) � // 〈du, v〉L2 − 〈u, δv〉L2

.

The adjoint domain of D(d) is the annihilator of D(d) with respect to Gd,

D(δ) = (D(d))⊥Gd .

If we write out the integrals in Gd we get

〈du, v〉L2 − 〈u, δv〉L2 =

∫
M

du∧ ∗v −
∫
M

u∧ ∗δv =

∫
M

du∧ ∗v ±
∫
M

u∧ d ∗ v =

∫
M

d(u∧ ∗v)

and comparing this to the discussion above we see that

D(d)′ = ∗D(δ).

We will see below how to obtain a self-dual domain on spaces with conic singularities by
considering the possible self-adjoint domains for d+ δ.

The second reason we want to emphasize is identifying reduced L2-cohomology for complete
metrics. For a complete metric, d+ δ is essentially self-adjoint by Gaffney’s Theorem29 and
so L2-cohomology is automatically self-dual. Unfortunately it is often infinite dimensional
because the exterior derivative fails to have closed range. As explained in the first lecture,
when this happens we study the reduced L2-cohomology and this coincides with a vector
space of harmonic forms. These spaces continue to satisfy Poincaré duality. Indeed, this
follows from the fact that if ω is closed and coclosed, then so is ∗ω.

29Theorem 1.3 above.



AN INTRODUCTION TO L2-COHOMOLOGY 21

Remark 3. Note that when working with weighted L2-spaces, the intersection pairing is a
pairing between xaL2Ω∗(M) and x−aL2Ω∗(M). This leads not to Poincaré duality but to a
‘generalized’ Poincaré duality analogous to the duality between the minimal and maximal L2

complexes.

3.5. Two facts from the b-calculus. 30.
The b-calculus was discussed in the lecture series by Daniel Grieser. We briefly recall two

important facts upon which we build our discussion of Hodge cohomology.

Recall that a b-differential operator is a differential operator that in local coordinates can
be written as a polynomial in vector fields tangent to the boundary. Thus if M is a manifold
with boundary, x is a boundary defining function and z represents local coordinates on ∂M,
then a b-differential operator of order k, P, has the form

P =
∑

j+|α|≤k

aj,α(x, z)(x∂x)
j∂αz .

A complex number s is an indicial root of P if

I(P ; s) =
∑

j+|α|≤k

aj,α(0, z)(s)j∂αz

is not invertible on ∂M.

Proposition 3.1. As an unbounded operator on xaL2, an elliptic b-differential operator is
Fredholm if and only if a is not an indicial root.

Proposition 3.2. Let P ∈ Diffkb (M ;E) be an elliptic b-differential operator acting on sec-
tions of vector bundle. If u ∈ x`L2(M ;E) is such that Pu = v′ + w′ with v′ polyhomo-
geneous and w′ ∈ x`

′
L2(M ;E) with `′ > ` then u = v + w with v polyhomogeneous and

w ∈ x`′−Hk(M ;E).

The error term is in x`
′
Hk(M ;E) if `′ does not correspond to an indicial root.

3.6. Reduced L2-cohomology of a b-metric. 31

As an example of computing reduced L2-cohomology through Hodge cohomology. Let us
return to the d metric from the second lecture and then further simplify to a b-metric. Thus
M is the interior of a manifold with boundary and, in a collar neighborhood of ∂M, the
metric takes the form

gb =
dx2

x2
+ g∂M .

We worked out the xαL2 cohomology for this metric under the assumption that −α /∈
{0, . . . ,m} and pointed out that we were making this assumption to guarantee that the
image of the exterior derivative is closed. Our discussion of Poincaré duality shows that the
case α = 0 is particularly interesting.

30For a full discussion see The Atiyah-Patodi-Singer index theorem by Richard Melrose
31This is already treated in The Atiyah-Patodi-Singer index theorem by Richard Melrose. See ‘Hodge co-

homology of gravitational instantons’ by Tamas Hausel, Eugénie Hunsicker, and Rafe Mazzeo for a treatment
that includes fibered boundary and fibered cusp metrics.
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There is a vector bundle, known as the b-tangent bundle and denoted bTM, whose sections
‘are’ the vector fields on M that are tangent to the boundary, Vb. Precisely the Serre-Swan
theorem32 gives us a vector bundle and bundle map

i : bTM −→ TM

such that i∗C∞(M ; bTM) = Vb ⊆ C∞(M ;TM).
In local coordinates near the boundary bTM is spanned by x∂x and ∂z, and the dual vector

bundle bT ∗M, known as the b-cotangent bundle is locally spanned by dx
x

and dz. The key

fact is that x∂x, as a section of bTM, does not vanish at the boundary and similarly dx
x
,

as a section of bT ∗M, is not singular at the boundary. Moreover, the map i between the
b-tangent bundle and the tangent bundle of M is canonically an isomorphism over M. Thus
when doing analysis over the interior of M there is no loss in replacing the tangent bundle
with the b-tangent bundle, or replacing differential forms with b-differential forms.

The exterior powers of the b-tangent bundle decompose in a collar neighborhood of the
boundary as

ΛjbT ∗M = ΛjT ∗∂M ⊕ dx

x
∧ Λj−1T ∗∂M

and correspondingly d+ δ takes the form

d+ δ =

(
d∂M + δ∂M −x∂x

x∂x −(d∂M + δ∂M)

)
.

Crucially, we note that d+ δ is an elliptic b-differential operator.

Theorem 3.3. If (M, g) is a manifold with a cusp metric then for every j there is a natural
isomorphism

H
j

L2(M, g) −→ Image
(
Hj
xεL2(M, g) −→ Hj

x−εL2(M, g)
)

for any sufficiently small ε > 0.

Proof. Given ω ∈ KerL2(d+ δ) we know from Proposition 3.2 that ω has a polyhomogenous
expansion and hence is in xεL2Ω∗(M) for sufficiently small ε, independent of ω. Thus we
have a natural map

Φ : KerL2(d+ δ) −→ Image
(
Hj
xεL2(M, g) −→ Hj

x−εL2(M, g)
)

and we will show that this is an isomorphism.
If Φ(ω) = 0 then ω defines a trivial Hx−εL2(M, g) class and so there exists ζ ∈ x−εL2Ωj(M)

such that ω = dζ. Without loss of generality ζ is orthogonal to Kerx−εL2 d. By the Kodaira
decomposition, which holds without taking closures because we know that the weighted L2

cohomology is finite dimensional for this weight, this means that ζ = δζ ′ for some ζ ′ ∈
Dmax,−ε(d))∗. Thus (d + δ)ζ = ω and, since ω is polyhomogeneous and d + δ is an elliptic
b-differential operator, we get that ζ is polyhomogeneous.

Let us write

ω = α +
dx

x
∧ β, ζ = µ+

dx

x
∧ γ.

32For a direct construction of the b-tangent bundle and other ‘rescaled’ bundles, see §8.1-8.2 of
The Atiyah-Patodi-Singer index theorem by Richard Melrose.
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Since ω and ζ are polyhomogeneous we know that |α|, |β| are in O(xc) for some c > ε and
|µ|, |γ| are in O(xc

′
) for some c′ > −ε. Thus we have

‖ω‖2
L2 =

∫
M

dζ ∧ ∗ω =

∫
M

d(ζ ∧ ∗ω) = lim
δ→0

∫
{x=δ}

ζ ∧ ∗ω = lim
δ→0

∫
{x=δ}

µ ∧ ∗β

which, since the integrand is O(δc+c
′
) and c+ c′ > 0, is equal to zero. This shows that Φ is

injective.
To show that Φ is surjective, we take a class in the image of the xεL2 cohomology in x−εL2.

We can represent this by a form η ∈ xεL2Ωj(M) that is polyhomogeneous (e.g., by using a
harmonic representative). Since d+ δ is Fredholm as an operator on x−εL2Ωj we can use the
natural pairing between xεL2Ω∗(M) and x−εL2Ω∗(M) to establish a decomposition

x−εL2Ω∗(M) = Imagex−εL2(d+ δ)⊕KerxεL2(d+ δ) = Imagex−εL2(d+ δ)⊕KerL2(d+ δ).

Thus we may write η = (d + δ)ζ + γ with ζ ∈ x−εL2Ω∗(M) and γ ∈ KerL2(d + δ). To see
that Φ(γ) = [η] we just need to show that δζ = 0.

We can write δζ = η − dζ − γ and then, formally,

‖δζ‖2
x−εL2 = ‖δζ, η − dζ − γ‖x−εL2 = ‖ζ, d(η − dζ − γ)‖x−εL2 = 0.

What is formal about this argument is that we ignored potential boundary terms from the
integration by parts. Another argument using polyhomogeneity shows that these boundary
terms vanish. �

3.7. A choice of self-dual boundary condition for an isolated conic singularity. 33

As an example of making a choice of domain using Hodge cohomology, let us return to the
wedge metric from the second lecture and then further simplify to a conic metric. Thus M
is the interior of a manifold with boundary and in a collar neighborhood of ∂M the metric
takes the form

gc = dx2 + x2g∂M .

Consider the decomposition of the de Rham operator near the boundary. First, with
respect to the splitting

ΩjM = Ωj(∂M)⊕ dx ∧ Ωj−1(∂M),

we have

d+ δ =

(
d∂M + 1

x2
δ∂M − 1

x
(v + 1− 2j)− ∂x

∂x −d∂M − 1
x2
δ∂M

)
.

We get a much more symmetric expression if we consider instead a weighted splitting

xjΩj(∂M)⊕ dx ∧ xj−1Ωj−1(∂M)

for which we get

(3.1) d+ δ =

(
1
x
(d∂M + δ∂M) − (v−j)

x
− ∂x

j
x

+ ∂x − 1
x
(d∂M + δ∂M)

)
.

Significantly, the model operator for the de Rham operator is the de Rham operator of the
boundary.

33Most of the results in this section are in ‘On the spectral geometry of spaces with cone-like singularities’
by Jeff Cheeger. For more on geometric analysis on similar spaces see the papers by Juan Gil, Thomas
Krainer and Gerardo Mendoza and the references at the end of this section.
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This scaling is naturally carried out by rescaling the cotangent bundle to the wedge cotan-
gent bundle. Let

V∗w = {ω ∈ C∞(M ;T ∗M) : i∗∂Mω = 0}.
By the Serre-Swan theorem there is a vector bundle, the wedge cotangent bundle, wT ∗M,
over M equipped with a bundle map i : wT ∗M −→ T ∗M such that

i∗C∞(M ; wT ∗M) = V∗w ⊆ C∞(M ;T ∗M).

The map i is an isomorphism over the interior of M, which is where we do our analysis, so
there is no loss in replacing the cotangent bundle with the wedge cotangent bundle. Note
that, near the boundary,

i∗C∞(M ; Λj(wT ∗M)) = xjΩj(∂M)⊕ dx ∧ xj−1Ωj−1(∂M),

so we achieve the scaling we wanted by working with wedge differential forms.

Having made this change note that x(d+δ) is a b-differential operator on wedge differential
forms. This allows us to apply the analysis from the previous sections. To start with, directly
from the definition of the maximal domain we have that

u ∈ Dmax(d+ δ) =⇒ u ∈ L2Ω∗(M), and x(d+ δ)u ∈ xL2Ω∗(M)

to which we can apply Proposition 3.2.

Lemma 3.4. If u ∈ Dmax(d+ δ) then u has a partial asymptotic expansion34

u(x, z) =
∑

sj∈specb(x(d+δ))

sj∈(−v
2
−1

2
,−v

2
+

1
2

)

usj(z)xsj + ũ(x, z)

with ũ ∈ x1−L2Ωj(M).

Remark 4. As an exercise work out the indicial roots of x(d+ δ) from (3.1). For symmetry
you may want to consider xv/2(x(d+ δ))x−v/2.

Using the boundary pairing it is not hard to see that

u ∈ Dmin(d+ δ) ⇐⇒ u ∈ Dmax(d+ δ) and usj = 0 for all sj in the sum above.

Thus we can identify Dmax(d + δ)/Dmin(d + δ), the space of all domains in between the
maximal and minimal ones, with the set of coefficients in the partial asymptotic expansion.
These coefficients are the ‘Cauchy data’ at our high codimension boundary.

Among this Cauchy data is a topological one35,

uv
2
(z) = A(u) + dx ∧B(u), A,B ∈ Hv/2

L2 (∂M).

All of the other indicial roots occurring in the partial asymptotic expansion above corre-
sponding to ‘small’ eigenvalues of (d∂M + δ∂M). If we allow ourselves to scale the metric g∂M ,
we can push all of these small eigenvalues out of this interval.

34The interval occurring in this sum is imposed on us by the volume form which has the form xv dx dv∂M .
The expansion is that part of the polyhomogeneous expansion that the indicial roots would give that lies in
L2 but not in xL2 (since that gets absorbed by the error term). The error term has better regularity, it is
in the b-Sobolev space of order one.

35In including A,B in Hv/2(∂M) we are eliding a weight coming from the fact that we have a wedge
differential form.
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Proposition 3.5. For a suitably scaled metric conic metric, gc = dx2 + x2g∂M , the space of
Cauchy data for d+ δ coincides with two copies of the cohomology of the boundary in degree
v/2. In particular, d+ δ is essentially self-adjoint if and only if

(3.2) Hv/2(∂M) = {0}.

It follows that this condition characterizes when the L2 Stokes’ theorem holds for conic met-
rics (without any scaling necessary).

The reason why there is no scaling necessary for the final statement is that L2 Stokes’
theorem holds precisely when Dmin(d) = Dmax(d) and neither of these notice the scaling of
the metric on the boundary, as this yields quasi-isometric metrics.

A space satisfying the topological condition (3.2) is known as a Witt space. If the space
is not Witt then Dmin(d) 6= Dmax(d) and we are interested in finding a self-dual domain.

As this is related to finding a self-adjoint domain for d + δ, let us consider the boundary
pairing for this operator

Dmax(d+ δ)×Dmax(d+ δ)
Gd+δ // R

(u,w) � // 〈(d+ δ)u,w〉 − 〈u, (d+ δ)w〉

which, using polyhomogeneity and Stokes’ theorem, is given by

Gd+δ(u,w) = 〈A(u), B(w)〉∂M − 〈B(u), A(w)〉∂M .

Following Cheeger, we choose a subspace Va ⊆ Hv/2

L2 (∂M), denote the orthogonal complement

by Vr ⊆ Hv/2

L2 (∂M), and then define a domain for d+ δ by

DVa(d+ δ) = {u ∈ Dmax(d+ δ) : A(u) ∈ Va and B(u) ∈ Vr}.

Note that

w ∈ Dmax(d+ δ) is s.t. Gd+δ(u,w) = 0 for all u ∈ DVa(d+ δ) ⇐⇒ w ∈ DVa(d+ δ),

or stated differently:

Proposition 3.6. For any subspace Va ⊆ Hv/2

L2 (∂M), the operator (d + δ,DVa(d + δ)) is
self-adjoint.

Now we want to turn this into a domain for d. Given u ∈ Dmax(d) we define

uδ = orthogonal projection of u onto δ(Dmax(δ))

Since δ(Dmax(δ))
⊥

= ker(d,Dmin(d)), we have u − uδ ∈ Dmin(d) and hence uδ ∈ Dmax(d).
Even better uδ is in Dmax(d+ δ) so uδ has a partial asymptotic expansion and we define

DVa(d) = {u ∈ Dmax(d) : A(uδ) ∈ Va}.

We can similarly take any w ∈ Dmax(δ), project it orthogonally onto d(Dmax(d)), and the
resulting form wd will be in Dmax(δ) ∩ Dmax(d + δ) and in particular it will have a partial
asymptotic expansion. It is easy to see that

Gd(u,w) = Gd(uδ, vd)
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and then since uδ and vd have partial polyhomogeneous expansions we can compute this as

Gd(u,w) = 〈A(uδ), B(wd)〉∂M .
In particular it follows that the adjoint domain of DVa(d) is

DVr(δ) = {u ∈ Dmax(δ) : B(wd) ∈ Vr}
and hence

DVa(d+ δ) = DVa(d) ∩DVr(δ) = DVa(d) ∩DVa(d)∗.

Thus each subspace Va ⊆ Hv/2(∂M) yields a Hilbert complex DVa(d) whose associated de
Rham operator is (d + δ,DVa(d + δ)). When will this satisfy Poincaré Duality? From the
discussion above we want

DVa(d) = DVa(d)′ = ∗DVa(d)∗ = ∗DVr(δ),

so from the description of Va and Vr this happens precisely when

Va = ∗V ⊥a .
The existence of such a subspace is equivalent to the vanishing of the signature of ∂M. We
refer to such a choice as Cheeger ideal boundary conditions and to a space where such
boundary conditions exist as a Cheeger space.

Theorem 3.7. A space with isolated conic singularities admits Cheeger ideal boundary con-
ditions if and only if the signature of its boundary (i.e., the signature of the link of the conic
singularity) vanishes.

It turns out36 that the signature of the resulting Hilbert complex is independent of the
choice of Cheeger ideal boundary conditions, and that this signature is invariant under
stratified homotopy equivalences and Cheeger space bordisms.

University of Illinois, Urbana-Champaign
E-mail address: palbin@illinois.edu

36See the papers by P.A., Eric Leichtnam, Rafe Mazzeo, and Paolo Piazza; also the work of these authors
with Markus Banagl for a topological interpretation and the paper ‘On the Hodge theory of stratified spaces’
by P.A. for a survey.
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