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Abstract. We introduce briefly the boundary value problems for first order elliptic oper-
ators on complete manifolds with compact boundary following the work of [4], [5]. To be
precise, we focus on the case where the operator is Dirac-type. The idea is to define the
boundary conditions as closed subspaces of a hybrid Sobolev space on the boundary induced
by an adapted operator. Taking local H1-regularity into consideration, one can further define
elliptic boundary conditions. This generalizes the Atiyah-Patodi-Singer boundary condition
and accounts for nice properties such as regularity and Fredholmness. As an application, we
show that the Callias index theorem still holds on manifolds with boundary.

1. Introduction

We consider the boundary value problems for Dirac-type operators. (Actually the theory
still holds for certain general first-order elliptic operators). The underlying manifold may be
noncompact, but the boundary is assumed to be compact. People would hope to impose certain
condition on the boundary so that the solution to the problem has nice properties, such as
finite-dimensionality and regularity. One natural requirement of the domain on the boundary
is that all elements vanish on it, which implies the minimal extension of the operator. The
other one is to impose no restrictions on the boundary, which implies the maximal extension.
Generally speaking, the first condition is too strong, whereas the second one is too weak.
So one needs to study the conditions lying in between. This is the intuition of identifying
boundary conditions as closed extensions between minimal and maximal extensions.

For a Dirac-type operator, one can easily get an adapted operator on the boundary which
is formally self-adjoint (cf. Section 3). Using the closedness of the boundary, one has spec-
tral decomposition of the space of square-integrable sections on the boundary induced by an
adapted operator. From this, we define a hybrid Sobolev space on the boundary. By the main
result Theorem 4.4, boundary conditions are equivalent to closed subspaces of that Sobolev
space. Thus we get a concrete way to describe boundary conditions.

One issue on manifolds with boundary is that the elements in the maximal domain may not
be locally H1, which is an obstruction to get regularity and Fredholmness. As a result, we
further define elliptic boundary condition requiring local H1-regularity for the domain. This
is more or less an analogue of operator ellipticity on manifolds without boundary. Therefore,
we have similar result saying that operators (together with their formal adjoints) which are
invertible at infinity are Fredholm. As an enlightening example, we show that the Atiyah-
Patodi-Singer boundary condition fits into this theory. We then apply this condition to Callias-
type operators to get the Callias index theorem.

This article is mostly a survey with some personal explorations of the theory and application.
It follows closely the work of [4], [5]. To avoid technical details, proofs of some main results
are omitted or sketched. The article is organized as following.

In Section 2, we talk about basic setting on manifolds with boundary. In Section 3, we
introduce Dirac-type operators and construct their adapted operators on the boundary from

1



2 PENGSHUAI SHI

the principal symbol level. In Section 4, we give important properties of the maximal domain
and formally define boundary conditions and elliptic boundary conditions. Then we study the
example of APS boundary condition. In Section 5, we do an index theoretical preparation. In
Section 6, we apply the APS boundary condition to Callias-type operators and get the Callias
index theorem as an immediate consequence.

2. Basic setting on manifolds with boundary

2.1. Some preliminaries. We use the notations in [5]. Let M be a complete Riemannian
manifold with compact boundary ∂M and volume elements dV on M , dS on ∂M . The interior
of M is denoted by M̊ . For a vector bundle E over M , C∞(M,E) is the space of smooth
sections of E, C∞c (M,E) is the space of smooth sections of E with compact support, and

C∞cc (M,E) is the space of smooth sections in E with compact support in M̊ . Note that

C∞cc (M,E) ⊂ C∞c (M,E) ⊂ C∞(M,E).

And when M is compact, C∞c (M,E) = C∞(M,E); when ∂M = ∅, C∞cc (M,E) = C∞c (M,E).
We also have L2(M,E), the Hilbert space of square-integrable sections of E, which is the
completion of C∞c (M,E) with respect to the norm induced by the L2-inner product

(u1, u2) =

∫
M
〈u1, u2〉dV,

where 〈·, ·〉 denotes the fiberwise inner product.
Let E,F be two Hermitian vector bundles over M and D : C∞(M,E) → C∞(M,F ) be a

first-order differential operator. The formal adjoint of D, denoted by D∗, is defined by∫
M
〈Du, v〉dV =

∫
M
〈u,D∗v〉dV,

for all u ∈ C∞cc (M,E) and v ∈ C∞(M,F ). If E = F and D = D∗, then D is called formally
self-adjoint. Let σD be the principal symbol of D defined by

D(fu) = fDu+ σD(df)u,

for all f ∈ C∞(M,R) and u ∈ C∞(M,E). Then

(2.1) σD∗(ξ) = −σD(ξ)∗,

for all ξ ∈ T ∗M .
Let τ ∈ TM |∂M be the unit inward normal vector field along ∂M . Using the Riemannian

metric, τ can be identified with its associated one-form. We have the following formula (cf.
[6, Proposition 3.4]).

Proposition 2.2 (Green’s formula). Let D be as above. Then for all u ∈ C∞c (M,E) and
v ∈ C∞c (M,F ), ∫

M
〈Du, v〉dV =

∫
M
〈u,D∗v〉dV −

∫
∂M
〈σD(τ)u, v〉dS.

2.3. Minimal and maximal extensions. Suppose Dcc := D|C∞cc (M,E), viewed as an un-

bounded operator from L2(M,E) to L2(M,F ). The minimal extension Dmin of D is the
operator whose graph is the closure of that of Dcc. The maxmal extension Dmax of D is the
extension of D to domDmax, which consists of all u ∈ L2(M,E) with Du ∈ L2(M,F ) in the
distributional sense. Equivalently, that means, Dmax = (D∗cc)

∗. Both Dmin and Dmax are
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closed operators. Their domains, domDmin and domDmax, become Hilbert spaces equipped
with the graph norm, which is the norm associated the inner product

(u1, u2)D :=

∫
M

(〈u1, u2〉+ 〈Du1, Du2〉)dV.

Later when we talk about boundary value problems, we mean closed operators lying between
Dmin and Dmax.

2.4. Sololev spaces. Now in addition, we assume that E and F are endowed with Hermitian
connections. Taking E as example. Denote the connection by ∇. For any u ∈ C∞(M,E), the
covariant derivative ∇u ∈ C∞(M,T ∗M ⊗ E). Then we define the Sobolev space

H1(M,E) := {u ∈ L2(M,E) : ∇u ∈ L2(M,E)}
again in distributional sense. It is a Hilbert space with Sobolev norm

‖u‖2H1(M) := ‖u‖2L2(M) + ‖∇u‖2L2(M).

Note that when M is compact, H1(M,E) does not depend on the choices of ∇ and Riemannian
metric, but when M is noncompact, it does.

If restricting everything to a compact subset of M , we get the local L2 and Sobolev spaces
L2

loc(M,E) and H1
loc(M,E). Now the Sobolev space is independent of the preceding choices.

3. Adapted operators to Dirac-type operators

From now on, we focus on a special kind of operators.

3.1. Dirac-type operators.

Definition 3.2. We say that D : C∞(M,E) → C∞(M,F ) is a Dirac-type operator if σD
satisfies the Clifford relations,

σD(ξ)∗σD(η) + σD(η)∗σD(ξ) = 2 〈ξ, η〉 · idEx ,(3.1)

σD(ξ)σD(η)∗ + σD(η)σD(ξ)∗ = 2 〈ξ, η〉 · idFx ,(3.2)

for all x ∈M and ξ, η ∈ T ∗xM .

This definition generalizes the classical Dirac operators on Clifford modules. By (2.1), if D
is a Dirac-type operator, so is D∗.

By (3.1) and (3.2), a Dirac-type operator D is elliptic with

(3.3) σD(ξ)−1 = σD(ξ)∗

for unit covector ξ. If D is also formally self-adjoint on E, then (3.1), (3.2) combined with
(2.1) gives that

σD(ξ)σD(η) + σD(η)σD(ξ) = −2 〈ξ, η〉 · idEx .

3.3. Adapted operators on the boundary. Note that for x ∈ ∂M , one can identify T ∗x∂M
with the space {ξ ∈ T ∗xM : 〈ξ, τ(x)〉 = 0}. Suppose D is a Dirac-type operator, by (3.1) and
(3.3),

(3.4) σD(τ(x))−1 ◦ σD(ξ) : Ex → Ex

is skew-Hermitian, for all x ∈ ∂M and ξ ∈ T ∗x∂M .

Definition 3.4. A formally self-adjoint first-order differential operator A : C∞(∂M,E) →
C∞(M,E) is called an adapted operator to D if the principal symbol of A is given by

(3.5) σA(ξ) = σD(τ(x))−1 ◦ σD(ξ).
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Remark 3.5. Adapted operators always exist and are also Dirac-type. They are unique up to
addition of a Hermitian bundle map of E.

Similarly, by (2.1), (3.3) and (3.5) for an adapted operator Ã to D∗,

σÃ(ξ) = σD∗(τ(x))−1 ◦ σD∗(ξ)
= (−σD(τ(x))∗)−1 ◦ (−σD(ξ)∗)

= σD(τ(x)) ◦ σD(ξ)∗.

Again by (3.5),

σÃ(ξ) = σD(τ(x)) ◦ (σD(τ(x)) ◦ σA(ξ))∗

= σD(τ(x)) ◦ σA(ξ)∗ ◦ σD(τ(x))∗

= σD(τ(x)) ◦ σ−A(ξ) ◦ σD(τ(x))−1.

This means that, if A is adapted to D, then

(3.6) Ã = σD(τ) ◦ (−A) ◦ σD(τ)−1

is an adapted operator to D∗. This is a natural choice of Ã from A. Moreover, if E = F and
D is formally self-adjoint, we can further require that A = Ã, namely, we can find an adapted
operator A to D such that

(3.7) A ◦ σD(τ) = −σD(τ) ◦A.

4. Boundary value problems

In this section, we study the boundary value problems for Dirac-type operatorsD : C∞(M,E)→
C∞(M,F ) with associated adapted operators A : C∞(∂M,E)→ C∞(∂M,E). Roughly speak-
ing, the boundary conditions are defined to be closed subspaces of a hybrid Sobolev space
induced by A. We follow the notations from last section.

4.1. Sobolev spaces on the boundary. From Subsection 3.3, we know that an adapted
operator A to a Dirac-type operator D is an essentially self-adjoint elliptic operator on the
closed manifold ∂M . For any s ∈ R, the positive operator (id +A2)s/2 is defined by functional
calculus.

Definition 4.2. For any s ∈ R, the Hs-norm on C∞(∂M,E) is defined by

(4.1) ‖u‖2Hs(∂M) := ‖(id +A2)s/2u‖2L2(∂M).

The Sobolev space Hs(∂M,E) is the completion of C∞(∂M,E) with respect to this norm. In
particular, H0(∂M,E) = L2(∂M,E).

There is an alternate way to describe Hs(∂M,E). By spectral theory, A has discrete spec-
trum consisting of real eigenvalues {λj}j∈Z, each of which has finite multiplicity, so the cor-
responding eigenspaces Vj are finite-dimensional. Hence we have decomposition of L2(∂M,E)
into eigenspaces of A:

(4.2) L2(∂M,E) =
⊕

λj∈spec(A)

Vj .

In other words, L2(∂M,E) has an orthonormal basis {ujk}j∈Z, k=1,2,...,mult(λj), of eigensections

of A, where for each j, {ujk}k is a basis of Vj . In terms of such an orthonormal basis, for
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u =
∑

j,k ajkujk and s ∈ R, the Hs-norm becomes

(4.3) ‖u‖2Hs(∂M) =
∑
j,k

|ajk |
2(1 + λ2

j )
s.

So Hs(∂M,E) can also be defined to be the subspace of L2(∂M,E) such that the right hand
side of (4.3) is finite.

Note that there is a perfect pairing between Hs(∂M,E) and H−s(∂M,E) for all s ∈ R.
Since ∂M is compact, the Rellich embedding theorem asserts that for s1 > s2, the embedding

(4.4) Hs1(∂M,E) ↪→ Hs2(∂M,E)

is compact.
For I ⊂ R, let

(4.5) PI : L2(∂M,E) →
⊕
λj∈I

Vj

be the orthogonal spectral projection. So

PI :
∑
j,k

ajkujk 7→
∑
λj∈I

ajkujk

It’s easy to see that

PI(H
s(∂M,E)) ⊂ Hs(∂M,E)

for all s ∈ R. Then by

C∞(∂M,E) =
⋂
s∈R

Hs(∂M,E),

we have

PI(C
∞(∂M,E)) ⊂ C∞(∂M,E).

Set Hs
I (A) := PI(H

s(∂M,E)). For a ∈ R, define the hybrid Sobolev spaces

Ȟ(A) := H
1/2
(−∞,a)(A) ⊕ H

−1/2
[a,∞)(A),(4.6)

Ĥ(A) := H
−1/2
(−∞,a)(A) ⊕ H

1/2
[a,∞)(A).(4.7)

The corresponding Ȟ-, Ĥ-norms are

‖u‖2
Ȟ(A)

:= ‖P(−∞,a)u‖2H1/2(∂M)
+ ‖P[a,∞)u‖2H−1/2(∂M)

,

‖u‖2
Ĥ(A)

:= ‖P(−∞,a)u‖2H−1/2(∂M)
+ ‖P[a,∞)u‖2H1/2(∂M)

.

The spaces Ȟ(A) and Ĥ(A) are independent of the choice of a. Since for a different a, the

Ȟ-, Ĥ-norms only differ by a norm on a finite-dimensional space, thus are equivalent to the
original ones. In particular,

(4.8) Ĥ(A) = Ȟ(−A).

Again, there is a perfect pairing between Ȟ(A) and Ĥ(A).
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4.3. The maximal domain. Before discussing the properties of domDmax, we first define a
subspace of it as

H1
D(M,E) := domDmax ∩H1

loc(M,E).

Note that the only difference between H1
D(M,E) and domDmax is the H1-regularity near the

boundary.
The next theorem summarizes the properties of domDmax (cf. [4], [5]).

Theorem 4.4. For a Dirac-type operator D : C∞(M,E)→ C∞(M,F ) with adapted operator
A : C∞(∂M,E)→ C∞(∂M,E), we have

(i) C∞c (M,E) is dense in domDmax;
(ii) the trace map Tu := u|∂M on C∞c (M,E) extends uniquely to a surjective bounded

linear map T : domDmax → Ȟ(A);
(iii) domDmin = {u ∈ domDmax : Tu = 0}. In particular, T induces an isomorphism

Ȟ(A) ∼= domDmax/domDmin;

(iv) for any closed subspace B ⊂ Ȟ(A), the operator DB,max with domain

domDB,max = {u ∈ domDmax : Tu ∈ B}

is a closed extension of D between Dmin and Dmax, and any closed extension of D
between Dmin and Dmax is of this form;

(v) for all u ∈ domDmax and v ∈ domD∗max,∫
M
〈Du, v〉dV =

∫
M
〈u,D∗v〉dV −

∫
∂M
〈σD(τ)Tu, Tv〉dS;

(vi) H1
D(M,E) = {u ∈ domDmax : Tu ∈ H1/2(∂M,E)}.

Remark 4.5. (1) To help understand (ii) and (vi), we recall the trace theorem which says that
T : C∞c (M,E)→ C∞(∂M,E) extends to a bounded linear map

T : Hk
loc(M,E) → Hk−1/2(∂M,E)

for all k ≥ 1.
(2) As a consequence of (iii), the topology of Ȟ(A) does not depend on the choice of adapted

operator A.
(3) (v) generalizes the Green’s formula. The pairing in the last integral is well-defined

because σD(τ) maps Ȟ(A) to Ĥ(Ã) by (3.6).

Similar to the elliptic regularity on manifolds without boundary, we have the following
boundary regularity.

Theorem 4.6. For any integer k ≥ 0,

domDmax ∩Hk+1
loc (M,E)

= {u ∈ domDmax : Du ∈ Hk
loc(M,F ) and P[0,∞)(Tu) ∈ Hk+1/2(∂M,E)}.

In particular,

u ∈ domDmax ∩H1
loc(M,E) ⇐⇒ P[0,∞)(Tu) ∈ H1/2(∂M,E).

Note that P[0,∞)(Tu) ∈ H1/2(∂M,E) if and only if Tu ∈ H1/2(∂M,E) by (4.6) and Theorem
4.4.(ii).
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4.7. Boundary conditions. In view of Theorem 4.4.(iv), the definition for boundary condi-
tions becomes natural.

Definition 4.8. A boundary condition for D is a closed subspace of Ȟ(A). Following the
notation in Theorem 4.4.(iv), we write DB,max for the operator with boundary condition B.

Regrading DB,max as an unbounded operator on L2(M,E), it has an adjoint operator which
is also given by a boundary condition.

Theorem 4.9. Assume that B ⊂ Ȟ(A) is a boundary condition for D. Let Ã be adapted to
D∗. Then

Bad := {v ∈ Ȟ(Ã) : (σD(τ)u, v) = 0, for all u ∈ B}
is a closed subspace of Ȟ(Ã), thus, it is a boundary condition for D∗, where (σD(τ)u, v) stands
for the L2-inner product on ∂M . Moreover, D∗

Bad,max
is the adjoint operator of DB,max.

Remark 4.10. This theorem basically follows from Theorem 4.4.(v).

Taking local H1-regularity into consideration, we define

domDB := {u ∈ H1
D(M,E) : Tu ∈ B} ⊂ domDB,max.

4.11. Elliptic boundary conditions. Notice that for a boundary condition B for D, in
general, domDB,max 6= domDB. That means, the sections in domDB,max are usually not
locally H1-regular. In order to have similar properties as elliptic operators on manifolds
without boundary, we need further restriction on the boundary conditions such that the two
domains are equal.

Definition 4.12. A boundary condition B is said to be elliptic if B ⊂ H1/2(∂M,E) and

Bad ⊂ H1/2(∂M,F ).

Remark 4.13. (1) By Theorem 4.4.(vi), domDB,max = domDB if and only ifB ⊂ H1/2(∂M,E).
So for elliptic boundary condition B, we will not distinguish between these two subspaces, and
can regard it as a closed subspace of domDmax with respect to the graph norm.

(2) There is an equivalent way to define elliptic boundary conditions, see [4, Definition 7.5]
or [5, Definition 3.7]. From there, we also get that B is an elliptic boundary condition if and
only if Bad is.

4.14. The Atiyah-Patodi-Singer boundary condition. A typical example of elliptic bound-
ary condition is introduced in [3], which is called Atiyah-Patodi-Singer boundary condition,
or APS boundary condition for short.

Let D : C∞(M,E)→ C∞(M,F ) be a Dirac-type operator. Assume product structure near
the boundary ∂M , such that

(4.9) D = σD(τ)
(
∂t +A

)
in a tubular neighborhood of ∂M , where t is the normal direction and A is an adapted operator
to D. Then by (2.1), (3.3) and the fact that A is formally self-adjoint,

D∗ =
(
− ∂t +A∗

)
σD(τ)∗

= σD∗(τ)
(
∂t − σD(τ) ◦A ◦ σD(τ)∗

)
= σD∗(τ)

(
∂t + σD(τ) ◦ (−A) ◦ σD(τ)−1

)
= σD∗(τ)

(
∂t + Ã

)
,

where Ã is as in (3.6).
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By the spectral theory discussed in Subsection 4.1, we have the decomposition (4.2) of

L2(∂M,E) and spectral projection PI as in (4.5). Let I = (−∞, 0), getting H
1/2
(−∞,0)(A) =

P(−∞,0)(H
1/2(∂M,E)). We define the Atiyah-Patodi-Singer boundary condition

(4.10) BAPS := H
1/2
(−∞,0)(A).

This is a closed subspace of Ȟ(A) given in (4.6). So APS boundary condition is indeed a
boundary condition as defined in Definition 4.8.

By Theorem 4.9, the adjoint boundary condition

Bad
APS = {v ∈ Ȟ(Ã) : (σD(τ)u, v) = 0, for all u ∈ BAPS}

= {v ∈ Ȟ(Ã) : (u, σD(τ)∗v) = 0, for all u ∈ BAPS}.

So

σD(τ)∗Bad
APS ⊂ (BAPS)⊥ ⊂ P[0,∞)(L

2(∂M,E)).

But on the other hand,

σD(τ)∗Bad
APS = σD(τ)−1Bad

APS ⊂ σD(τ)−1Ȟ(Ã) = Ȟ(−A) = Ĥ(A)

by (3.6) and (4.8). Hence

σD(τ)∗Bad
APS ⊂ P[0,∞)(L

2(∂M,E)) ∩ Ĥ(A) = H
1/2
[0,∞)(A)

by (4.7). This gives that

Bad
APS ⊂ (σD(τ)∗)−1H

1/2
[0,∞)(A) = σD(τ)H

1/2
[0,∞)(A) = H

1/2
[0,∞)(−Ã) = H

1/2
(−∞,0](Ã).

On the other hand, one easily verifies that H
1/2
(−∞,0](Ã) ⊂ Bad

APS. Therefore the adjoint condition

for APS boundary condition is

Bad
APS = H

1/2
(−∞,0](Ã).

In particular, this means that

Proposition 4.15. The APS boundary condition defined in (4.10) is an elliptic boundary
condition.

5. Fredholm property and relative index theorem

In this section, we consider the operator DB,max for an elliptic boundary condition B and
develop some basic index theory.

5.1. Invertibility at infinity. We know that if the manifold M is noncompact without
boundary, in general, an elliptic operator on it is not Fredholm. Similarly, for noncompact
manifold M with compact boundary ∂M , elliptic boundary condition does not guarantee that
the operator is Fredholm. In order to make it, we need proper behavior of the operator at
infinity.

Definition 5.2. We say that an operator D is invertible at infinity (or coercive at infinity) if
there exist a constant C > 0 and a compact subset K bM such that

(5.1) ‖Du‖L2(M) ≥ C‖u‖L2(M),

for all u ∈ C∞c (M,E) with supp(u) ∩K = ∅.
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Remark 5.3. (1) By definition, if M is compact, then D is invertible at infinity.
(2) Boundary conditions have nothing to do with invertibility at infinity since the compact

set K can always be chosen such that a neighborhood of ∂M is contained in K.

An important class of examples for operators which are invertible at infinity is the so-called
Callias-type operators that will be discussed in next section.

5.4. Fredholmness. Recall for ∂M = ∅, a first order essentially self-adjoint elliptic operator
which is invertible at infinity is Fredholm (cf. [1, Theorem 2.1]). For ∂M 6= ∅, we have the
following analogous result.

Theorem 5.5. Assume that DB,max : domDB,max → L2(M,F ) is a Dirac-type operator with
elliptic boundary condition. If D is invertible at infinity, then DB,max has finite-dimensional
kernel and closed range.

Before proving it, we first recall a classical result (cf. [12, Proposition 19.1.3]).

Lemma 5.6. Let X and Y be Banach spaces and L : X → Y be a bounded linear map. Then
the following are equivalent:

(i) Every bounded sequence {xj} in X such that {Lxj} converges in Y has a convergent
subsequence in X.

(ii) The operator L has finite-dimensional kernel and closed range.

Proof of Theorem 5.5. We apply the above lemma. Let {uj} be a bounded sequence in
domDB,max such that Duj → v ∈ L2(M,F ). We need to show that {uj} has a convergent
subsequence in domDB,max.

Assume that D is invertible at infinity as in Definition 5.2. Let χ : M → [0, 1] be a cut-off
function such that χ ≡ 1 on K and K ′ := supp(χ) is compact. Since B is an elliptic boundary
condition, each element in domDB,max is locally H1. By (5.1) and the fact that D is of
Dirac-type, passing to a subsequence if necessary,

‖uj − uk‖L2(M) ≤ ‖χ(uj − uk)‖L2(M) + ‖(1− χ)(uj − uk)‖L2(M)

≤ ‖uj − uk‖L2(K′) + C−1‖D((1− χ)(uj − uk))‖L2(M)

≤ ‖uj − uk‖L2(K′) + C−1‖ − σD(dχ)(uj − uk)‖L2(M)

+ C−1‖(1− χ)(Duj −Duk)‖L2(M)

≤ C ′‖uj − uk‖L2(K′) + C−1‖Duj −Duk‖L2(M)

≤ ε1 + ε2 → 0,

where the presence of ε1 is because of Rellich embedding theorem (4.4), and the presence of ε2

is by hypothesis. So {uj} is a Cauchy sequence in L2(M,E) and thus converges in L2(M,E).
Notice that domDB,max is equipped with graph norm. Now {uj} and {Duj} converge in

L2(M,E) and L2(M,F ), respectively, that is, {uj} converges in the graph norm of D. Hence
it converges in domDB,max, and DB,max has finite-dimensional kernel and closed range by
Lemma 5.6. �

As an immediate consequence, we get a criteria for DB,max to be Fredholm.

Corollary 5.7. Assume that DB,max : domDB,max → L2(M,F ) is a Dirac-type operator with
elliptic boundary condition. If D and D∗ are invertible at infinity, then DB,max is a Fredholm
operator.
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Under such circumstance, we define the L2-index of D subject to the boundary condition
B as the integer

L2 − indDB,max := dim kerDB,max − dim kerD∗Bad,max ∈ Z.

5.8. Relative index theorem. After having a well-defined index for an operator with elliptic
boundary condition, the relative index theorem can be achieved now. Here we only give a
statement, and for more details, see [4], [5]. To simplify notation, we use DB for DB,max. This
will not cause confusion by (1) of Remark 4.13.

Let Mj , j = 1, 2 be two manifolds with compact boundary and Dj,Bj : domDj,Bj →
L2(Mj , Fj) be two Dirac-type operators with elliptic boundary conditions. Suppose M ′j∪ΣjM

′′
j

are partitions of Mj into relatively open submanifolds, where Σj are compact hypersurfaces

of M̊j . We assume that Σj have tubular neighborhoods which are diffeomorphic and the
structures on the neighborhoods are isomorphic.

We cut Mj along Σj and glue the pieces together interchanging M ′′1 and M ′′2 . In this way
we obtain the manifolds

M3 := M ′1 ∪Σ M
′′
2 , M4 := M ′2 ∪Σ M

′′
1 ,

where Σ ∼= Σ1
∼= Σ2. Then we get operators D3,B3 and D4,B4 on M3 and M4, respectively.

The relative index theorem says that

Theorem 5.9. If Dj,Bj , j = 1, 2, 3, 4 are all Fredholm operators, then

(L2 − indD1,B1) + (L2 − indD2,B2) = (L2 − indD3,B3) + (L2 − indD4,B4).

6. Callias-type operators with APS boundary condition

6.1. Callias-type operators. Let M be a complete odd-dimensional oriented Riemannian
manifold with boundary ∂M . E is a Clifford module over M . Let D : C∞c (M,E)→ C∞c (M,E)
be a formally self-adjoint Dirac-type operator, meaning its principal symbol is the Clifford
multiplication c(·). Suppose Φ ∈ End(E) is a self-adjoint bundle map (called potential). Then
D := D + iΦ is again a Dirac-type operator on E with formal adjoint given by

D∗ = D − iΦ.
So

(6.1)
D∗D = D2 + Φ2 + i[D,Φ],

DD∗ = D2 + Φ2 − i[D,Φ],

where
[D,Φ] := DΦ − ΦD

is the commutator of the operators D and Φ.

Definition 6.2. We say that D is a Callias-type operator if

(i) [D,Φ] is a zeroth order differential operator, i.e. a bundle map;
(ii) there is a compact subset K bM and a constant c > 0 such that

Φ2(x) − |[D,Φ](x)| ≥ c

for all x ∈ M \ K. Here |[D,Φ](x)| denotes the operator norm of the linear map
[D,Φ](x) : Ex → Ex. In this case, the compact set K is called the essential support
of D.

Remark 6.3. D is a Callias-type operator if and only if D∗ is.
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The definition implies immediately that

Proposition 6.4. Callias-type operators are invertible at infinity in the sense of Definition
5.2.

Proof. Since ∂M is compact, we can always assume that the essential support K contains a
neighborhood of ∂M . Thus for all u ∈ C∞c (M,E) with supp(u) ∩ K = ∅, u ∈ C∞cc (M,E).
Then by Green’s formula Proposition 2.2, (6.1), and Definition 6.2,

‖Du‖2L2(M) = (Du,Du)L2(M) = (D∗Du, u)L2(M)

= (D2u, u)L2(M) + ((Φ2 + i[D,Φ])u, u)L2(M)

≥ ‖Du‖2L2(M) + c‖u‖2L2(M)

≥ c‖u‖2L2(M).

Therefore ‖Du‖L2(M) ≥
√
c‖u‖L2(M) and D is invertible at infinity. �

Remark 6.5. When ∂M = ∅, D has a unique closed extension to L2(M,E), and it is a Fredholm
operator. Thus one can define its L2-index,

L2 − indD := dim{u ∈ L2(M,E) : Du = 0} − dim{u ∈ L2(M,E) : D∗u = 0}.
An exciting result says that this index is equal to the index of a Dirac-type operator on a
compact hypersurface outside of the essential support. This was first prove by Callias in [11]
for Euclidean space (see also [7]) and was later generalized to manifolds in [2], [13], [10], etc.
In [9] and [8], the relationship between such result and cobordism invariance of the index was
being discussed for usual and von Neumann algebra cases, respectively.

Remark 6.6. If ∂M 6= ∅, in general, D is not Fredholm. By Corollary 5.7, we need an elliptic
boundary condition in order to have a well-defined index and study it.

6.7. The APS boundary condition for Callias-type operators. We impose the APS
boundary condition as discussed in Subsection 4.14 that enables us to define the index for
Callias-type operators.

As in Subsection 4.14, we assume the product structure (4.9) for D near ∂M . We also
assume that Φ does not depend on t near ∂M . Then near ∂M ,

D = c(τ)
(
∂t +A− ic(τ)Φ

)
= c(τ)

(
∂t +A

)
,

where A := A− ic(τ)Φ is still formally self-adjoint and thus is an adapted operator to D.
Replacing D and A in Subsection 4.14 by D and A, we define the APS boundary condi-

tion BAPS as in (4.10) for the Callias-type operator D. It is an elliptic boundary condition.
Combining Corollary 5.7, Remark 6.3 and Proposition 6.4, we obtain the Fredholmness for the
operator DBAPS,max.

Proposition 6.8. The operator DBAPS,max is Fredholm, thus has an index

L2 − indDBAPS,max = dim kerDBAPS,max − dim kerD∗
Bad

APS,max
∈ Z.

6.9. The Callias index theorem. In this subsection, we explain the Callias index theorem
mentioned in Remark 6.5 under APS boundary condition.

By definition 6.2, the potential Φ is nonsingular outside of the essential support K. Then
over M \ K, there is a bundle decomposition E|M\K = E+ ⊕ E−, where E± are the posi-
tive/negative eigenspaces of Φ. E± are also Clifford modules.

For any subset U ⊂ M , denote U◦ := U \ ∂M . Let L b M be any compact subset of M

containing a neighborhood of ∂M such that K◦ ∈ L̊, and N := ∂L◦ is a compact oriented
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hypersurface. Thus we can consider Clifford modules EN± := E±|N . On EN±, there is a
grading induced by ν := ic(τ). Let ∂± be a restriction of D to EN± such that ∂ anti-commutes
with ν. They are still Dirac-type operators. Now split EN+ into E±N+ given by

E±N+ = {u ∈ EN+ : νu = ±u},

and denote by ∂±+ the restrictions of ∂+ to E±N+.
After the above setting, the Callias index theorem is stated as

Theorem 6.10. Let D = D + iΦ : C∞c (M,E)→ C∞c (M,E) be a Callias-type operator on an
odd-dimensional oriented complete manifold M with compact boundary ∂M . BAPS is the APS
boundary condition described in Subsection 6.7. Then

L2 − indDBAPS,max = ind ∂+
+ ,

where ∂+
+ : C∞(N,E+

N+)→ C∞(N,E−N+) is the Dirac-type operator on the compact manifold
N without boundary.

The main ingredient in proving this theorem for ∂M = ∅ (cf. [2]) is relative index theorem.
Since we already established such a result in Theorem 5.9, the proof here is essentially the
same.

References

[1] N. Anghel, An abstract index theorem on noncompact Riemannian manifolds, Houston J. Math. 19 (1993),
no. 2, 223–237. MR1225459 (94c:58193)

[2] N. Anghel, On the index of Callias-type operators, Geom. Funct. Anal. 3 (1993), no. 5, 431–438. MR1233861
(94m:58213)

[3] M.F. Atiyah, V.K. Patodi, and I.M. Singer, Spectral asymmetry and Riemannian geometry. I, Mathematical
Proceedings of the Cambridge Philosophical Society, 1975, pp. 43–69.

[4] C. Bär and W. Ballmann, Boundary value problems for elliptic differential operators of first order, Surveys
in Differential Geometry 17 (2012).

[5] C. Bär and W. Ballmann, Guide to Boundary Value Problems for Dirac-Type Operators (2013), available
at arXiv:1307.3021[math.DG].

[6] B. Booß-Bavnbek and K.P. Wojciechhowski, Elliptic boundary problems for Dirac operators, Springer Sci-
ence & Business Media, 2012.

[7] R. Bott and R. Seeley, Some remarks on the paper of Callias: “Axial anomalies and index theorems on open
spaces” [Comm. Math. Phys. 62 (1978), no. 3, 213–234;, Comm. Math. Phys. 62 (1978), no. 3, 235–245.

[8] M. Braverman and S. Cecchini, Callias-type operators in von Neumann algebras (2016), available at arXiv:
1602.06873[math.DG].

[9] M. Braverman and P. Shi, Cobordism Invariance of the Index of Callias-Type Operators (2015), available
at arXiv:1512.03939[math.DG].

[10] U. Bunke, A K-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995),
no. 2, 241–279.

[11] C. Callias, Axial anomalies and index theorems on open spaces, Comm. Math. Phys. 62 (1978), no. 3,
213–235.
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