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1. What is L2-cohomology?

L2-cohomology may be thought of as a slight modification of the ordinary
de Rham cohomology of a smooth manifold. Let (M, g) be a Riemannian
manifold of dimension n, and let (C∞(M ; Λ•), d•) be the de Rham complex
of M ; i.e., C∞(M ; Λk) consists of the space of smooth k-forms on M , and

dk = d : C∞(M ; Λk)→ C∞(M ; Λk+1)

is the exterior derivative of differential forms. Then, the well-known de
Rham Theorem says that the cohomology of this complex (called, obviously,
the de Rham cohomology of M) is isomorphic to the singular cohomology
of M , with real coefficients:

Hk
dR(M) ∼= Hk(M ;R).

The main point is then that the de Rham cohomology groups are topological
data about the manifold.

Since M has a Riemannian metric, we can add some geometry to this
picture. The metric g induces an L2-metric on the spaces C∞(M ; Λk), given
by

(α, β)L2 :=

∫
M
〈α, β〉ωg,

where 〈α, β〉(x) = 〈αx, βx〉 is the usual inner product on forms, and ωg ∈
C∞(M ; Λn) is the volume form. We may then consider the L2-completion,
L2(M ; Λk), of C∞(M ; Λk) with respect to the L2-metric. We define d to be
the exterior differential with domain

dom d = {α ∈ Ωk
(2)(M ;R)|dα ∈ Ωk+1

(2) (M ;R)}.

Where

Ωk
(2)(M ;R) := C∞(M ; Λk) ∩ L2(M ; Λk).

Definition 1.1. The L2-cohomology groups of M are the cohomology groups
of the complex (Ω•(2)(M ;R), d•):

H i
(2)(M ;R) := Ker di/ Im di−1.
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The L2-cohomology groups of M are no longer topological invariants–they
depend only on the quasi-isometry class of the metric g.

Definition 1.2. Two Riemannian metrics g and h on M are called quasi-
isometric if there is a positive constant K such that, for all x ∈M ,

K−1gx ≤ hx ≤ Kgx.

It then follows that, if g and h are quasi-isometric Riemannian metrics
on M , an i-form α on M is square-integrable with respect to the metric g if
and only if it is square-integrable with respect to h.

Let ? : C∞(M ; Λk) → C∞(M ; Λn−k) be the Hodge star operator, which
is the unique operator satisfying

α ∧ ?β = 〈α, β〉ωg

for all α ∈ C∞(M ; Λk). The star operator allows us to define the codifferen-

tial map, δk : C∞(M ; Λk)→ C∞(M ; Λk−1), given by δk = (−1)n(k+1)+1?d?.

Let dk0 be the restriction of dk to the space of compactly supported smooth
k-forms, and similarly define δk,0. We again slightly change the domain of
δk, to be

dom δk = {α ∈ Ωk
(2)(M ;R)|δkα ∈ Ωk−1

(2) (M ;R)}

Since dom δk+1,0 = C∞c (M ; Λk+1) is dense, and by Stokes’ Theorem,

〈dα, β〉 = 〈α, δβ〉

whenever α ∈ dom dk and β ∈ dom δk+1,0. It follows then that dk has a

well-defined weak closure δ∗k+1,0, as well as a strong closure dk. This means

that α ∈ dom dk and dkα = η if there is a sequence αj ∈ dom dk such that

αj → α and dαj → η in L2. Similarly, δk has strong closure δk.

Then, we can also define

Hk
(2),](M ;R) = Ker dk/ Im dk−1

as a possible candidate for L2-cohomology. It is shown in [C] that by Elliptic
regularity, the natural morphism

ι(2) : Hk
(2)(M ;R)→ Hk

(2),](M ;R)

is always an isomorphism, so one can use either definition. We also have
natural pseudonorms on the spaces Hk

(2)(M ;R), Hk
(2),](M ;R), given by

‖U‖ = inf
α∈U
‖α‖

which are preserved by the above isomorphism. Since dk is a closed oper-
ator, the Open Mapping Theorem implies that the image of dk is closed if
Hk

(2)(M ;R) = Hk
(2),](M ;R) is finite dimensional.
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Example 1.3. Let M = R, with its standard metric. It is easy to see that
H0

(2)(R) is 0, since a constant function is L2 if and only if it is the zero

function. H1
(2)(R) is a bit more complicated.

If f is a smooth function such that f(x) = 1/x for |x| ≥ 1, then we trivially

have f dx ∈ Ker d1. If f dx = dα for some smooth function α, we we must
have α(x) = log(x) + C for x > 1. But then, α /∈ L2(R), which implies

f dx /∈ Im d0. As H1
(2)(R) ∼= H1

(2),](R), we also know that f dx /∈ Im d0 (else

f dx would be zero in H1
(2),](R)). Let φ be a smooth function supported

on [−2, 2], such that φ|[−1,1]
= 1, and set φn(x) = φ(x/n). Then, we have

d(φnα)→ f dx in L2, so that Im d0 is not closed. By the above remark, this
implies that H1

(2)(R) is infinite dimensional!

2. Why should I care?

What is the point of any of this? One answer is to attempt to extend
success of Hodge theory for compact oriented Riemannian manifolds to less
well-behaved spaces. We first review some basic Hodge theory, then examine
the results of Cheeger [C] and Cheeger, Goresky, and MacPherson in [CGM].

Definition 2.1. The Laplacian is the second order differential operator

∆ = dδ + δd

on the spaces C∞(M ; Λk), where δ = (−1)n(k−1)+1 ?d? is the formal adjoint
of the exterior derivative d. A k-form α is called Harmonic if ∆α = 0.

Recall that, on a compact Riemannian manifold, the harmonic forms are
those α ∈ C∞(M ; Λk) such that α is both closed (i.e., dα = 0) and coclosed
(i.e., δα = 0). The famous Hodge Theorem then tells that every de Rham
cohomology class has a unique harmonic representative; i.e., the de Rham
cohomology is isomorphic to the space of harmonic forms. Moreover, if α is a
harmonic form, then ?α is also a harmonic form. Indeed, a quick calculation
shows that

∆(?α) = [d ? d ? (?α) + ?d ? d(?α)]

=
[
(−1)k(n+k)+1d ? (dα) + ?d(δα)

]
= 0

since α is both closed and coclosed. This observation then yields an isomor-
phism

Hk(M ;R)
∼−→ Hn−r(M ;R)

α 7→ ?α

which is seen to be none other than Poincaré duality.

In the above case, where M is compact, L2-cohomology is naturally iso-
morphic to de Rham cohomology, so all these constructions hold for the
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groups Hk
(2)(M). What if M is not compact? Clearly, we still have the

Hodge star operator and the Laplacian. Only now, it is not the case that a
harmonic form α ∈ Ωk

(2)(M ;R) is necessarily closed and coclosed.

Example 2.2. Consider the function f = x2 − y2 defined on the open unit
disk in R2. Then, we clearly have ∆f = 0, so f is a harmonic 0-form and is
square integrable, but f is not closed, as it is not a constant function. f is,
however, coclosed, since d ? f = 0.

Consequently, harmonic forms may not define cohomology classes in L2-
cohomology. However, if we consider the subspace Hk(M) of closed and
coclosed harmonic forms in Ωk

(2)(M ;R), there is a natural morphism, called

the Hodge map

ιH : Hk(M)→ Hk
(2)(M ;R)

which is not necessarily an isomorphism. When ιH is an isomorphism, we
say that the Strong Hodge Theorem holds for M (again, this property only
depends on the quasi-isometry class of the metric on M). The surjectivity

of ιH is equivalent to Im dk−10 ⊆ Im dk−1, and if Stokes’ Theorem holds in
the L2 sense, then ιH is injective. This just means that

〈dα, β〉 = 〈α, δβ〉

for all α ∈ dom d and β ∈ dom δ, or equivalently, for all α ∈ dom d and
β ∈ dom δ. This property holds whenM is complete (a result of M. Gaffney),
but this is not the case we will be most interested in.

We then have the following result of Kodaira:

Theorem 2.3 (Kodaira).

L2(M ; Λk) = Im δk+1,0 ⊕ Im dk−10 ⊕Hk(M)

where the sum is orthogonal and preserves Ωk
(2)(M ;R). This result is some-

times known as the Weak Hodge Theorem, and holds for M an arbitrary
incomplete Riemannian manifold.

From this theorem, if α ∈ Ker dk, we have α ∈ Im dk−10 ⊕Hk(M). Indeed,

Theorem 2.3 implies that, if dkα = 0 and α ∈ Im δk+1,0, there exist sequences

α1,j ∈ dom dk and α2,j ∈ Im δk+1,0 such that α1,j → α, dα1,j → 0, and
δα2,j → α. Then,

(α1,j , δα2,j)L2 = (dα1,j , α2,j)L2 → ‖α‖2L2 = 0

so that α = 0. From this, it follows that the Strong Hodge Theorem is

equivalent to Im dk−10 = Im dk−1.

Perhaps the whole point of this discussion is to understand the difficulties
that may arise from extending Hodge theory on a compact Riemannian
manifold to an incomplete Riemannian manfiold. Secondary to this, in the
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absence of the Strong Hodge Theorem holding, extracting any topological
interpretation out of the spaces Hk(M) and Hk

(2)(M ;R).

3. L2-Cohomology of Metric Cones

We now want to describe the L2-cohomology for the simplest singularity in
the compact case. We spend a good deal of time on this case, as it paves the
way for the calculation of L2-cohomology in many other, more general cases.
Let M be an n-dimensional (oriented) compact Riemannian manifold, with
metric gM . Then, the metric cone C∗(M) is by definition the completion
of the smooth incomplete Riemannian manifold C(N) = (0, 1) ×M , with
metric

g = dt⊗ dt+ t2π∗gM

where t is the standard coordinate on R+, and π : R+ ×M → M is the
natural projection. Any differential k-form ξ on C∗(M) can be written
uniquely as

ξ = η + dt ∧ ζ
where η and ζ are forms which do not involve dt. That is, with respect to
local coordinates (x) = (x1, · · · , xn) on M , we can write

η(t, x) =
∑
α∈I(k)

ηα(t, x) dxα

where I(k) is the set of all multi-indices α = (α1, · · · , αk) such that 1 ≤ α1 <
· · · < αk ≤ n, dxα = dxα1 ∧ · · · ∧ dxαn , and ηα(t, x) are smooth functions on
R+ ×M . Similarly,

η(t, x) =
∑

α∈I(k−1)

ηα(t, x) dxα.

Consequently, for fixed values of t, η(t, x) and ζ(t, x) define differential forms
on M . The metric on C∗(M) is defined in such a way that

‖ξ‖2 = t−2k‖η(t, x)‖2M + t−2(k−1)‖ζ(t, x)‖2M .
We see this easily by checking on decomposable forms, and the fact that
g−1 = ∂t ⊗ ∂t + t−2π∗g−1M . Then, we have the following theorem.

Theorem 3.1 (Cheeger). Let M be a compact Riemannian manifold of
dimension n, and let C∗(M) be the metric cone on M . Then,

Hk
(2)(C

∗(M);R) ∼=
{
Hk(M ;R), if k ≤ n/2

0 if k > n/2

We give a sketch of the proof of Theorem 3.1 (see [K],[C]):
If ω ∈ C∞(M ; Λk), then with respect to local coordinates (x1, · · · , xn) on

M , we can write

ω(x) =
∑
α∈I(k)

ωα(x) dxα.
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The k-form π∗ω on C∗(M) is then given in local coordinates (t, x1, · · · , xn)
by the same formula:

π∗ω(t, x) =
∑
α∈I(k)

ωα(x) dxα,

so that
‖π∗ω(t, x)‖2 = t−2k‖ω(x)‖2M .

The volume form on C∗(M) differs from M by a factor of tn, so that∫
C∗(M)

‖π∗ω‖2 =

∫ 1

0

∫
M
t−2k‖ω‖2M tn dt

Since M is compact, π∗ω is square-integrable on C∗(M) if and only if ω = 0
or ∫ 1

0
tn−2k dt <∞.

Hence, if k ≤ n/2, π∗ restricts to a map

π∗ : L2(M ;R)→ L2(C∗(M);R)

which commutes with d; thus, π∗ induces a natural map

π∗ : Hk(M ;R) ∼= Hk
(2)(M ;R)→ Hk

(2)(C
∗(M);R).

We wish to show that this map is an isomorphism for all k ≤ m/2, which
we will do by constructing a chain homotopy. Given a k-form ξ on C∗(M),
we write ξ = η + dt ∧ ζ, where η and ζ don’t involve dt, as before. We can
then define the k-form ∂η

∂t (t, x) and (k − 1)-form ∂ζ
∂t (t, x) on C∗(M) via

∂η

∂t
(t, x) =

∑
α∈I(k)

∂ηα
∂t

(t, x) dxα

∂ζ

∂t
(t, x) =

∑
α∈I(k−1)

∂ζα
∂t

(t, x) dxα.

We define the “differential” dM : C∞(C∗(M); Λk) → C∞(C∗(M); Λk+1) in
the local coordinates (x) = (x1, · · · , xn) by

dMξ(t, x) =
∑

1≤j≤n

∑
α∈I(k)

∂ηα
∂t

(t, x) dxj ∧ dxα

+
∑

1≤j≤n

∑
α∈I(k−1)

∂ζα
∂t

(t, x) dxj ∧ dt ∧ dxα.

Then,
dMξ = dMη − dt ∧ dMζ,

and

dξ = dMξ + dt ∧ ∂η
∂t

= dMη + dt ∧
(
∂η

∂t
− dMζ

)
.
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For fixed s ∈ (0, 1), define a map

H : C∞(C∗(M); Λk)→ C∞(C∗(M); Λk−1)

in the local coordinates (x1, · · · , xn) by

(Hξ)(t, x) =
∑

α∈I(k−1)

(∫ t

s
ζα(τ, x) dτ

)
dxα

or, more compactly, as Hξ =
∫ t
s ζ. Then,

dHξ = dM

∫ t

s
ζ + dt ∧ ∂

∂t

∫ t

s
ζ

=

∫ t

s
dMζ + dt ∧ ζ,

and

Hdξ = H

(
dMη + dt ∧

(
∂η

∂t
− dMζ

))
=

∫ t

s

(
∂η

∂t
− dMζ

)
= η − π∗η(s) −

∫ t

s
dMζ,

where η(s)(x) = η(s, x) ∈ C∞(M ; Λk) for fixed s ∈ (0, 1). Consequently,

dHξ +Hdξ = dt ∧ ζ + η − π∗η(s)

= ξ − π∗η(s).

As we are, we have constructed a chain homotopy between the complexes
C∞(M ; Λ•) and C∞(C∗(M); Λ•), at least for • ≤ n/2.

If ξ ∈ Ωk
(2)(M ;R), then the integral

∫
C∗(M)

‖ξ‖2 =

∫ 1

0

∫
M

(
t−2k‖η(t)‖M + t−2(k−1)‖ζ(t)‖M

)
tn dt

is finite. Hξ is a (k − 1)-form, so∫
C∗(M)

‖Hξ‖2 ≤
∫ 1

0

∫
M
t−2(k−1)

∫ t

s
‖ζ(τ) dτ‖2M tn dt.
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Via the Cauchy-Schwartz inequality, and reversing the order of integration,
we find that if k ≤ n/2,∫
C∗(M)

‖Hξ‖2 ≤
∫ 1

0

∫
M
tn−2k+2

∣∣∣∣∫ t

s
‖ζ(τ)‖2M dτ

∣∣∣∣ dt
=

∫ s

0

∫
M
‖ζ(τ)‖2M

∫ τ

0
tn−2k+2 dt dτ +

∫ 1

s

∫
M
‖ζ(t)‖2M

∫ 1

τ
tn−2k+2 dt dτ

≤ 1

n− 2k + 3

(∫ s

0

∫
M
‖ζ(τ)‖2Mτn−2k+3 dτ +

∫ 1

s

∫
M
‖ζ(τ)‖2M dτ

)
≤
(

1 + s−n+2k−2

n− 2k + 3

)∫
C∗(M)

‖ξ‖2 <∞.

Consequently, Hξ ∈ Ωk−1
(2) (C∗(M);R); thus, if ξ ∈ Ωk

(2)(M ;R), and k ≤ n/2,

Hξ is square integrable and

ξ = dHξ +Hdξ + π∗η(s).

If dξ = 0,

ξ ∈ d
(
L2(C∗(M); Λk−1)

)
+ π∗L2(M ; Λk),

which is to say that π∗ : Hk(M ;R) → Hk
(2)(C

∗(M);R) is surjective. Since

d2 = 0,

dξ = d(Hdξ) + dπ∗η(s)

Now, if dξ ∈ π∗L2(C∗(M); Λk), then Hdξ = 0 by construction. From this,
we have that π∗ : Hk(M ;R)→ Hk

(2)(M ;R) is injective for k ≤ n/2.

All that’s left to do is to show Hk
(2)(C

∗(M);R) = 0 for k > n/2. By

Cauchy-Schwartz, if φ ∈ Ωk
(2)(C

∗(M);R), and 0 < a < b < 1,(∫ a

b

∫
M
‖φ(t)‖2M dt

)2

≤
(∫ 1

0

∫
M
tn−2k‖φ(t)‖2M dt

)(∫ a

b

∫
M
t2k−n dt

)
=

(∫
C∗(M)

‖φ‖2
)(∫

M
1

)(
b2k−n+1 − a2k−n+1

2k − n+ 1

)
.

Thus,
∫ 1
0

∫
M ‖φ

(t)‖M dt exists if k ≥ n/2. For almost all x ∈M , the integral∫ t

0
φ =

∫ t

0
φ(τ) dτ

exists for all t ∈ (0, 1). Then, if ξ = η + dt ∧ ζ ∈ Ωk
(2)(C

∗(M);R), and

k − 1 ≥ n/2, we define

H0ξ =

∫ t

0
ζ.

Mimicking the argument that showed Hξ was square-integrable, we see that
H0ξ is square-integrable as well, and ξ = dH0ξ+H0dξ. Hence, if ξ is closed,
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then ξ = dH0ξ, from which it follows Hk
(2)(C

∗(M);R) = 0 when k−1 ≥ n/2.

We still must worry about the case where n is odd and k = (n+ 1)/2, which
is trickier; see Cheeger [C].

With Theorem 3.1 in our toolbelt, we can handle a class of spaces with
isolated metrically conical singularities.

Definition 3.2. A compact metric space X of dimension n+ 1 has isolated
metrically conical singularities if for some finite set of points {pj} such that
X\ ∪Nj=1 pj is a smooth Riemannian manifold, and if there exist smooth
compact Riemannian n-dimensional manifolds Mj, open neighborhoods Uj
of pj, such that Uj\{pj} is isometric to the cone C∗t0,t(Mj) = (t0, t)×Mj ⊂
C∗(Mj).

We say X has isolated conical singularities if the metric on X\ ∪j pj is
quasi-isometric to a metric of the form dt⊗ dt+ t2π∗Mj in a neighborhood
of the pj . We define the L2-cohomology of X by

Hk
(2)(X) = Hk

(2)(X\ ∪
N
j=1 pj).

Now, we can generalize even further to pseudomanifolds with conical sin-
gularities. Let X be an n-dimensional pseudomanifold– a simplicial complex
such that each point is contained in a closed n-simplex, each (n−1)-simplex
is a face of exactly two n-simplices , and the n-simplices can be compatibly
oriented. Alternatively, a Riemannian pseudomanifold X of dimension n is
a purely n-dimensional stratified paracompact metric space X which admits
a stratification

X = Xn ⊃ · · · ⊃ X1 ⊃ X0

such that Xn−1 = Xn−2 (i.e., X\Xn−2 is an n-dimensional oriented Rie-
mannian manifold which is dense in X, so that the induced metric on X\Σ
is quasi-isometric to the flat metric). Let Σ = Xn−2. In such a case, we
define

Hk
(2)(X) = Hk

(2)(X\Σ).

In this case, d = δ∗, and the Strong Hodge Theorem extends to this case. If
X has a stratification by even dimensional strata, then we have the isomor-
phism Hk

(2)(X) ∼= IHn−k(X) ∼= Hom(IHk(X),C), where IHk(X) denotes

the k-th intersection homology group of X ([C], [CGM]).

4. Intersection Homology Theory

We recall the defintion and basic properties of the “middle” intersection
homology groups IHk(X) of Goresky and MacPherson.

Let X be an n-dimensional complex analytic variety, which is contained
in a non-singular variety. We can give X a Whitney stratification

X = Xn ⊃ · · · ⊃ X2 ⊃ X1 ⊃ X0

such that
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(1) Xi\Xi−1 is a possibly empty complex analytic i-dimensional mani-
fold,

(2) Whitney’s condition B holds with respect to any pair of strata R
and S: if xj ∈ S is a sequence converging to some x ∈ R, and yj ∈ R
also converges to x, then the secant lines xjyj converge to some line
` and the tangent spaces TxjS converge to some limiting plane τ ,
and ` ⊂ τ .

Although we use this stratification to define the groups IHk(X), the result
is independent of the stratification.

Let C•(X) denote the chain complex of compact (real) subanalytic chains
on X, with complex coefficients. The homology of this complex is just the
ordinary singular homology H∗(X;C). For any ξ ∈ Ci(X), let |ξ| denote the
support of ξ.

We define the subcomplex IC•(X) of allowable chains by the condition:
ξ ∈ ICi(X) if

dim |ξ| ∩Xk ≤ i− n+ k − 1

and

dim |∂ξ| ∩Xk ≤ i− n+ k − 2.

Definition 4.1. IHi(X) is defined to be the i-th homology group of the
chain complex IC•(X).

The groups IHi(X) satisfy many useful properties, such as having an in-
tersection product IHi(X)×IHj(X)→ IHi+j−2n which leads to a Poincaré
duality isomorphism, and behaving nicely with respect to normally nonsin-
gular inclusions and projections (which we will not delve into). Intersection
homology (really, its dual, intersection cohomology) also has a axiomatic
construction in terms of sheaves (by Deligne), and these objects are of ut-
most importance in certain categories of perverse sheaves on arbitrary com-
plex analytic spaces.

But, for this paper, we mainly cared about the fact that IH•(X) is the
homology theory dual to L2-cohomology, at least in the case of spaces with
conical singularities. The “local” calculation of IHi(X) at an isolated singu-
lar point is also found to be “dual” to the calculation of Theorem 3.1. The
point being, the we have a very concrete topological interpretation of the
groups H i

(2)(X), as “things we integrate over allowable chains”, and

the best way to generalize the integration pairing of de Rham cohomology
and singular homology to spaces with (reasonable) singularities. To wrap
up, if Σ is the singular part of X, and α ∈ Ωi

(2)(X\Σ), then for almost all

allowable chains ξ ∈ ICi(X), the integral∫
ξ
α
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exists, and Stokes’ theorem holds:∫
ξ
dα =

∫
∂ξ
α.

We note that it is never the case that |ξ| ⊂ Σ, since

dim |ξ| ∩ Σ ≤ i− n+ (n− 1)− 1 = i− 2.

Thus, we get a natural (integration) pairing∫
: H i

(2)(X\Σ)⊗ IHi(X)→ R.
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