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Introduction

In 1982 Edward Witten published the paper “Supersymmetry and Morse the-
ory”, [3], which was very influential on the research of mathematical physics, geometry
and topology of the 1980’s. With the purpose of making important physical concepts
present in the then emerging topic of supersymmetry accessible to a mathematical au-
dience, Witten presented some models where supersymmetry was present and pointed
out what type of properties would be pysically relevant and their connections with
mathematics. While analyzing a model for sumpersymmetric (non-relativistic) quan-
tum mechanics given by the algebra of differential forms on a manifold he gave an
analytic argument to prove the Morse Inequalities.

Recall that f ∈ C∞(M) is a Morse function on a n-dimensional compact oriented
manifold M if all of its critical points are nondegenerate. That is, if for every x ∈M
such that dfx = 0, the Hessian of f at x is non-singular. Since non-degenerate critical
points are isolated,M being compact implies that f has only a finite number of critical
points. The first important property of Morse functions is present in the following
well-known result:
Theorem 0.1 (Morse lemma). For any critical point x ∈ M of the Morse function
f , there is an open neighborhood Ux of x not containing any other critical point and
an oriented coordinate system y = (y1, . . . , yn) on Ux such that

f(y) = f(x)− 1
2(y1)2 − · · · − 1

2(ynf (x))2 + 1
2(ynf (x)+1)2 + · · ·+ 1

2(yn)2

The integer nf (x) is called the Morse index of f at x and it does not depend on
the coordinates. If we denote by mi, the number of critical points of f with Morse
index equal to i and by βi = dimH i

dR(M ;R) the i-th Betti number of M , we can
state the Morse inequalities:
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Theorem 0.2. (i) Weak Morse inequalities: For any 0 ≤ i ≤ n we have

βi ≤ mi

(ii) Strong Morse inequalities: For any 0 ≤ i ≤ n we have

βi − βi−1 + · · ·+ (−1)iβ0 ≤ mi −mi−1 + · · ·+ (−1)im0

Moreover, for i = n:

βn − βn−1 + · · ·+ (−1)nβ0 = mn −mn−1 + · · ·+ (−1)nm0

The Morse inequalities give us analytical tools to study the topology of a manifold
through the behavior of the critical points of a Morse function. A proof of Theorem
0.2 using topological tools, as well as a proof of Morse lemma and further development
of Morse theory can be found in [2]. In the present text we will follow the lines of
Witten’s argument thus obtaining a analytic proof for the inequalities.

Witten’s idea consisted of deforming the exterior derivative by conjugation with a
term eT f in way similar to the time evolution of operators representing observables in
the Heisenberg picture of quantum mechanics. Under this time evolution, eigenfunc-
tions of the kernel of the associated Laplace operator will get concentrated around
the critical points of f , thus allowing a local analysis to be made.

Many works formalizing Witten’s argument or extended its ideas to other areas
followed the original paper, further strenghtening the connections between analysis,
topology, geometry and mathematical physics. Here, we will follow the approach
presented in [1], including most of its results and notation.

In Section 1 we present the prerequisites of differential geometry mainly with the
purpose of fixing notation. We refer to [4] for details. Section 2 introduces Witten
deformation and shows that the time evolution of the Laplace operator do not lose in-
formation about the Betti numbers. Sections 3 and 4 are more computationally heavy
and present the local and global behavior, respectively, of the deformed Laplacian.
These two sections are more technical and basically pave the way to obtaining Propo-
sition 4.3, which is the main result that will allow us to prove the Morse inequalities
in Section 5.
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1 Preliminaries

From now on, let (M, g) be a n-dimensional compact oriented Riemannian man-
ifold without boundary. The main result we want to prove, Theorem 0.2, does not
depend on the metric g, thus some extra hypotheses will be included later about the
behavior of g in the proximities of each critical point without affecting the generality
of the proof.

Recall that with the exterior derivative d : Ωk(M) → Ωk+1(M), the algebra of
differential forms Ω(M) = ⊕n

i=0 Ωi(M) can be seen as a cochain complex

(Ω•(M), d) : 0→ Ω0(M) d−→ Ω1(M) d−→ · · · d−→ Ωn(M) d−→ 0

called the de Rham complex, with corresponding cohomology given by the de Rham
cohomology:

Hk
dR(M ;R) :=

ker d|Ωk(M)

Im d|Ωk−1(M)

The Riemannian metric g induces an inner product on each Ωk(M) via

〈α, β〉 =
∫

M
α ∧ ?β (1.1)

where ? : Ωk(M) → Ωn−k(M) is the Hodge star operator. If we denote by d∗ :
Ωk(M)→ Ωk−1(M) the differential operator given by

d∗ = (−1)nk+n+1 ? d?

it is easy to see that
〈dα, β〉 = 〈α, d∗β〉

That is, d and d∗ are formally adjoint.
If we denote the de Rham- Hodge operator by D = d + d∗ then the Laplacian of

the de Rham complex is the elliptic operator D2 = dd∗+d∗d. In particular the Hodge
decomposition theorem holds, giving us a decomposition

Ω(M) = kerD2 ⊕ Im D2

As a corollary of the decomposition theorem, we have the isomorphism

kerD2|Ωk(M) ' Hk
dR(M ;R) (1.2)
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which allows us to obtain the Betti numbers via the kernel of D2.
We can obtain convenient local expressions for these operators if we introduce

the Clifford operators that give an action of TM on the exterior algebra bundle. If
v ∈ TM , let us denote

c(v) := v∗ ∧ −vy and ĉ(v) := v∗ ∧+vy

where y is the interior multiplication and v∗ ∈ T ∗M is the dual of v under g. We will
also denote c(v∗) = c(v) and ĉ(v∗) = ĉ(v). These maps satisfy the Clifford relations:

c(v)c(w) + c(w)c(v) = −2g(v, w)

ĉ(v)ĉ(w) + ĉ(w)ĉ(v) = 2g(v, w)

c(v)ĉ(w) + ĉ(w)c(v) = 0

Given a local orthonormal frame e1, . . . , en for TM with corresponding dual basis
e1, . . . , en of T ∗M and denoting by ∇ the connection induced on Ω(M) by the Levi-
Civita connection, we have the following local expressions:

d =
n∑

i=1
ei ∧∇ei

(1.3)

d∗ = −
n∑

i=1
eiy∇ei

(1.4)

D =
n∑

i=1
c(ei)∇ei

(1.5)

Equation (1.5), which is a direct consequence of (1.3) and (1.4), is presenting D as a
Dirac operator.

2 Witten Deformation

Let f ∈ C∞(M) be a fixed Morse function on M and for every T ∈ R define the
deformation of the exterior diferential operator as:

dT f = e−T fd eT f (2.1)

Since the algebra of differential forms is a module over C∞(M) and multiplication
by a function does not affect the grading, the deformation defined above can stilll
be seen as an operator dT f : Ωk(M) → Ωk+1(M), for any k. Also, as an immediate
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consequence of the definition (2.1), we see that

d2
T f = e−T fd2eT f = 0

Therefore, we have a deformation of the de Rham complex, given by the cochain
complex

(Ω•(M), dT f ) : 0→ Ω0(M) dT f−−→ Ω1(M) dT f−−→ · · · dT f−−→ Ωn(M) dT f−−→ 0

Associated to this complex, for each k = 0, . . . , n, we have the k-th cohomology space

Hk
T f,dR(M ;R) :=

ker dT f |Ωk(M)

Im dT f |Ωk−1(M)

As it turns out, the information contained in the dimensionality of the cohomology
spaces is the same in the de Rham complex and in the deformation:
Proposition 2.1. For any 0 ≤ k ≤ n,

dimHk
T f,dR(M ;R) = dimHk

dR(M ;R) (2.2)

Proof. This is a mere consequence of the fact that dT fe
−T f = e−T fd. We claim

that the linear map Φ : Ωk(M)→ Ωk(M) given by

α 7→ e−T fα

induces a linear map Hk
dR(M ;R) → Hk

T f,dR(M ;R). To see that, take a closed form
α ∈ Ωk(M). Then

dT fe
−T fα = e−T fdα = 0

That is, under Φ, ker d|Ωk(M) is mapped into ker dT f |Ωk(M). Also if β ∈ Ωk−1(M) we
have

Φ(dβ) = e−T fdβ = dT f (e−T fβ)

So Φ maps Im d|Ωk−1(M) into Im dT f |Ωk−1(M) and, therefore induces a linear map in
the quotient Hk

dR(M ;R)→ Hk
T f,dR(M ;R).

By doing a completely analogous resoning we can see that the map given by

α ∈ Ωk(M) 7→ eT fα ∈ Ωk(M)

induces a linear map Hk
T f,dR(M ;R) → Hk

dR(M ;R) which is clearly the inverse of
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the map induced by Φ. So Hk
dR(M ;R) and Hk

T f,dR(M ;R) are isomorphic and, in
particular, have same dimension.

It is not hard to see that we can develop the Hodge Theory associated to the
elliptic complex (Ω•(M), dT f ) in the same way as in the de Rham complex. Given
α ∈ Ωk−1(M), β ∈ Ωk(M) we have

〈dT fα, β〉 = 〈e−T fd eT fα, β〉 = 〈d eT fα, e−T fβ〉 = 〈α, eT fd∗e−T fβ〉

In other words, the formal adjoint of dT f is

d∗T f = eT fd∗e−T f (2.3)

Associated with these operators we can put DT f = dT f +d∗T f so the corresponding
Laplace operator for (Ω•(M), dT f ) is

D2
T f = dT fd

∗
T f + d∗T fdT f

From (2.1) and (2.3) it is clear that D2
T f : Ωk(M) → Ωk(M). The decomposition

theorem then follows the same way as mentioned for the de Rham complex. In
particular we have the analogous result to (1.2), which, according to (2.2) implies

dim kerD2
T f |Ωk(M) = dimHk

T f,dR(M ;R) = dimHk
dR(M ;R) (2.4)

Thus we see that we reduced the problem of estimating the Betti numbers βk =
dimHk

dR(M ;R) to analyzing the behavior of the kernel of D2
T f . By the independence

of the parameter T in the right-hand side of (2.4), we might do that in the limit
T → +∞. We will start by understanding kerD2

T f in a neighborhood of a critical
point.

3 Local description of kerD2
T f

Assume we have local coordinates y = (y1, . . . , yn) in a neighborhood Ux of a
critical point of f , x ∈M like in Theorem 0.1. Assume the metric is such that on Ux

the vectors ei = ∂
∂yi form an oriented orthonormal basis. From Theorem 0.1 we see

that;

df = −y1 dy1 − · · · − ynf (x) dynf (x) + ynf (x)+1 dynf (x)+1 + · · ·+ yn dyn
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Notice also that from (1.3) we have

dT f = e−T f

(
n∑

i=1
dyi ∧∇ei

)
eT f = e−T feT f

n∑
i=1

dyi ∧∇ei
+ e−T f

n∑
i=1

dyi ∧ d(eT f )(ei)

=
n∑

i=1
dyi ∧∇ei

+ T
n∑

i=1
df(ei)dyi∧ = d+ Tdf∧

Similarly, from (1.4) we obtain

d∗T f =
n∑

i=1
eiy∇ei

+ T
n∑

i=1
df(ei)eiy = d∗ + T (df ∗)y

where (df)∗ ∈ C∞(M ;TM) is the dual of df under g. In local coordinates, df ∗ =
(−y1, . . . ,−ynf (x), ynf (x)+1, . . . , yn). By adding the previous results we conclude

DT f = D + T ĉ(df)

Now we can calculate

D2
T f = D2 + T [Dĉ(df) + ĉ(df)D] + T 2ĉ(df)2

By the properties of Clifford actions, the last term is simply T 2ĉ(df)2 = T 2|df |2 =
T 2|y|2 in local coordinates. The first term can be seen as

D2 =
n∑

i,j=1
c(ei)c(ej)∇ei

∇ej
=
∑

i

c(ei)2∇2
ei

= −
∑

i

∇2
ei

But in local coordinates ∇ei
= ∂

∂yi , so D2 = −∑n
i=1

(
∂

∂yi

)2
. The remaining term can

be simplified by using the fact that ∇ is a Clifford connection:

T [Dĉ(df) + ĉ(df)D] = T

[
n∑

i=1
c(ei)∇ei

ĉ(df) +
n∑

i=1
ĉ(df)c(ei)∇ei

]

= T

[
n∑

i=1
c(ei)ĉ(∇ei

df) +
n∑

i=1
c(ei)ĉ(df)∇ei

+
n∑

i=1
ĉ(df)c(ei)∇ei

]

= T
n∑

i=1
c(ei)ĉ(∇ei

df)
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Notice that for i ≤ nf (x), ∇ei
df = −dyi and for i > nf (x), ∇ei

df = dyi, thus

T [Dĉ(df) + ĉ(df)D] = −T
nf (x)∑
i=1

c(ei)ĉ(ei) + T
n∑

i=nf (x)+1
c(ei)ĉ(ei)

We can rewrite this by adding and subtracting nT = T
∑n

i=1 1 thus obtaining

T [Dĉ(df) + ĉ(df)D] = T

nf (x)∑
i=1

(1− c(ei)ĉ(ei)) +
n∑

i=nf (x)+1
(1 + c(ei)ĉ(ei))

− nT
But from definition,

c(ei)ĉ(ei) = (dyi∧−eiy)(dyi∧+eiy) = dyi∧eiy−eiydy
i∧ = 1−2eiydy

i∧ = 2dyi∧eiy−1

Thus

nf (x)∑
i=1

(1− c(ei)ĉ(ei)) +
n∑

i=nf (x)+1
(1 + c(ei)ĉ(ei)) =

nf (x)∑
i=1

2eiydy
i ∧+

n∑
i=nf (x)+1

2dyi ∧ eiy

Now we can put all the terms together to get

D2
T f = −

n∑
i=1

(
∂

∂yi

)2

− nT + T 2|y|2 + 2T
nf (x)∑

i=1
eiydy

i ∧+
n∑

i=nf (x)+1
dyi ∧ eiy

 (3.1)

Here we already can see some localizing aspects of Witten deformation. As T
increases, it is necessary that a form in the kernel of D2

T f be concentrated around
y = 0, otherwise the term T 2|y|2 would make it impossible for it to vanish.

It is not hard to see that the kernel of the last term of the expression 3.1, given
by the linear operator

nf (x)∑
i=1

2eiydy
i ∧+

n∑
i=nf (x)+1

2dyi ∧ eiy

is generated by dy1 ∧ · · · ∧ dynf (x). On the other hand the first part, given by the
differential operator

−
n∑

i=1

(
∂

∂yi

)2

− nT + T 2|y|2

acts only on the components of the form. So if we multiply dy1 ∧ · · · ∧ dynf (x) by a

8



function g(y) that is a solution to
− n∑

i=1

(
∂

∂yi

)2

− nT + T 2|y|2
 g(y) = 0

we will have an element of the kernel ofD2
T f . But this operator is a harmonic oscilator,

with a one dimensional kernel and well known solution given by

g(y) = exp
(
−T |y|2

2

)

For more details, see [1]. These calculations can be summarized by the following
proposition:
Proposition 3.1. For any T > 0, the operator

−
n∑

i=1

(
∂

∂yi

)2

− nT + T 2|y|2 + 2T
nf (x)∑

i=1
eiydy

i ∧+
n∑

i=nf (x)+1
dyi ∧ eiy


acting on Ω(Rn) is nonnegative. Its kernel is 1-dimensional and it is generated by

exp
(
−T |y|2

2

)
dy1 ∧ · · · ∧ dynf (x) (3.2)

All the nonzero eigenvalues of this operator are greater than CT for a fixed C > 0.

4 Global Description of kerD2
T f

Proposition 3.1 gives the behavior of the kernel of D2
T f in the neighborhood of a

critical point. We can globalize it by first extending the generating form (3.2) to M .
In order to do that, let γ(|y|) be a smooth bump function around y = 0. That is,
γ(|y|) = 1 when |y| ≤ r and γ(|y|) = 0 when |y| ≥ 2r for some radius r such that the
ball of radius 2r is still contained in Ux. Then we define ρx,T ∈ Ωnf (x)(M) by

ρx,T = γ(|y|)
√
αx,T

exp
(
−T |y|2

2

)
dy1 ∧ · · · ∧ dynf (x)

where αx,T is a normalization factor to make 〈ρx,T , ρx,T 〉 = 1. That is,

αx,T =
∫

Ux

γ(|y|)2 exp
(
−T |y|2

)
dy1 · · · dyn
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Let us denote by

H0 := H0(M,ΛM) = L2(M,ΛM) and H1 := H1(M,ΛM)

the Sobolev spaces of forms associated to the 0-th and 1-st norm ‖ · ‖0 and ‖ · ‖1

induced by the inner product (1.1). Denote by Z(f) the set of critical points of f ,
let ET ⊂ H0 be the subspace generated by ρx,T for all x ∈ Z(f) and E⊥T ⊂ H0 its
orthogonal complement. We will decompose DfT as operators between these spaces
by using the orthogonal projections pT : H0 → ET and p⊥T : H0 → E⊥T . Thus, denote

DT,1 = pTDT fpT DT,2 = pTDT fp
⊥
T

DT,3 = p⊥TDT fpT DT,4 = p⊥TDT fp
⊥
T

Estimates for each of these components can be separately done according to the
following proposition.
Proposition 4.1. (i) For any T > 0, DT,1 = 0

(ii) There is a T1 > 0 such that for any s ∈ E⊥T ∩ H1, s′ ∈ ET and T ≥ T1 we
have

‖DT,2s‖0 ≤
‖s‖0

T
and ‖DT,3s

′‖0 ≤
‖s′‖0

T

(iii) There are T2 > 0 and C > 0 such that for any s ∈ E⊥T ∩H1 and T ≥ T2,

‖DT fs‖0 ≥ C
√
T‖s‖0

Proof. (i) From the definition of ET we know that

pT s =
∑

x∈Z(f)
〈ρx,T , s〉0ρx,T

But since 〈ρx,T , s〉0ρx,T ∈ Ωnf (x)(M) and since ρx,T and its derivatives have compact
inside Ux, that means DT f (〈ρx,T , s〉0ρx,T ) ∈ Ωnf (x)−1(M)⊕Ωnf (x)+1(M) has compact
inside Ux. But inside Ux, the projection pT maps into Ωnf (x)(M), so

pTDT f (〈ρx,T , s〉0ρx,T ) = 0

for each x ∈ Z(f) and consequently DT,1 = 0.
(ii) Since DT f is self adjoint, we see that DT,3 is the formal adjoint of DT,2, so the

second estimate follow from the first one. From the definitions, given s ∈ E⊥T ∩ H1

10



we have

DT,2s = pTDT fs =
∑

x∈Z(f)
〈ρx,T , DT fs〉0ρx,T =

∑
x∈Z(f)

〈DT fρx,T , s〉0ρx,T

Thus
‖DT,2s‖0 ≤

∑
x∈Z(f)

‖DT fρx,T‖0‖s‖0

But

‖DT fρx,T‖2
0 =

∫
Ux

∣∣∣∣∣DT f
γ(|y|)
√
αx,T

exp
(
−T |y|2

2

)∣∣∣∣∣
2

dy1 · · · dyn

The factor multiplying γ(|y|) is on the kernel of D2
T f so we only have to consider the

action of DT f on γ(|y|). But the derivatives of γ(|y|) vanish everywhere except an
annulus around x. That means if we can bound the terms depending on T by a term
of the form e−RT , with R the inner radius of the annulus. The remaining terms will
be bounded by a constant. Since that same behavior happens for every x ∈ Z(f) we
conclude that there are constants C1 and C2 such that

‖DT,2s‖0 ≤ C1e
−C2T‖s‖0

In particular, there is a T1 > 0 such that T ≥ T1 gives us the required estimate.
(iii) The proof of this estimate involves the same kind of computations, but it

is longer, requiring some particular cases to be analyzed separately. For sake of not
making this text loose track of its main purpose by dwelling on technical details we
will just refer the reader to [1].

For any c > 0, let ET (c) ⊂ H0 be the direct sum of eigenspaces of DT f corre-
sponding to the eigenvalues in the interval [−c, c] and let PT (c) : H0 → ET (c) be the
orthogonal projection onto ET (c). Using a little of spectral theory and the previous
proposition one can obtain the following lemma (see [1]).
Lemma 4.2. There are constants C1 > 0 and T3 > 0 such that for any T ≥ T3 and
any σ ∈ ET we have

‖PT (c)σ − σ‖0 ≤
C1

T
‖σ‖0

Now we present the main result, from where the Morse inequalities will follow as
a corollary.
Proposition 4.3. For any c > 0, there is a T0 > 0 such that for every T ≥ T0 the
number of eigenvalues of D2

T f |Ωi(M), in [0, c] equals to mi, for 0 ≤ i ≤ n.
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Proof. If we take x1 6= x2 ∈ Z(f) since 〈ρx1,T , ρx2,T 〉0 = 0 we see that by Cauchy-
Shwarz inequality

|〈PT (c)ρx1,T , PT (c)ρx2,T 〉0| ≤ ‖PT (c)ρx1,T − ρx1,T‖0‖PT (c)ρx2,T − ρx2,T‖0

+ ‖PT (c)ρx1,T − ρx1,T‖0 + ‖PT (c)ρx2,T − ρx2,T‖0

So, by applying Lemma 4.2 to the ρxi,T we have 〈PT (c)ρx1,T , PT (c)ρx2,T 〉0 → 0 when
T → ∞. In particular, we conclude that for large enough T all the PT (c)ρx,T are
linearly independent. That means there must be a T5 > 0 such that T > T5 implies

dimET (c) ≥ dimPT (c)ET = dimET (4.1)

Assume we have dimET (c) > dimET . That means there is a nonzero element
s ∈ ET (c) perpendicular to PT (c)ET . Thus, for every x ∈ Z(f)

〈s, PT (c)ρx,T 〉0 = 0

This in turn implies

pT s =
∑

x∈Z(f)
〈s, ρx,T 〉0ρx,T −

∑
x∈Z(f)

〈s, PT (c)ρx,T 〉0PT (c)ρx,T

=
∑

x∈Z(f)
〈s, ρx,T 〉0(ρx,T − PT (c)ρx,T )−

∑
x∈Z(f)

〈s, ρx,T − PT (c)ρx,T 〉0PT (c)ρx,T

Once again, by applying Cauchy-Schwarz in the inner products and using Lemma 4.2
we see that there is a constant C2 > 0 such that T > T5 implies

‖pT s‖0 ≤
C2

T
‖s‖0

So that means we have

‖p⊥T s‖0 = ‖s− pT s‖0 ≥ ‖s‖0 − ‖pT s‖0 ≥ C3‖s‖0

for some constant C3. Thus, Proposition 4.1 implies that

C
√
TC3‖s‖0 ≤ C

√
T‖p⊥T s‖0 ≤ ‖DT fp

⊥
T s‖0 = ‖DT fs−DT fpT s‖0

≤ ‖DT fs‖0 + ‖DT,3s‖0 ≤ ‖DT fs‖0 + ‖s‖0

T
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Notice that above we used the fact that DT fpT s = DT 1s + DT 3s = DT 3s, also by
Proposition 4.1. Rewriting the previous estimate we get

‖DT fs‖0 ≥ CC3
√
T‖s‖0 −

1
T
‖s‖0

So if s 6= 0 as T → ∞ we see that ‖DT fs‖0 → ∞, which contradicts the assump-
tion that s ∈ ET (c), that is, s is a linear combination of eigenvectors of DT f with
eigenvalues bounded in [−c, c].

Thus we can conclude

dimET (c) = dimET =
n∑

i=0
mi

and {PT (c)ρx,T}x∈Z(f) form a basis for ET (c).
Now we will analyze each order 0 ≤ i ≤ n separately by decomposing ET (c). Let

Qi be the orthogonal projection from H0 to onto the completion of Ωi(M) ⊂ H0. By
Lemma 4.2 we see that

‖Qnf (x)PT (c)ρx,T − ρx,T‖0 ≤ ‖PT (c)ρx,T − ρx,T‖0 ≤
C1

T
‖ρx,T‖0 = C1

T

for any x ∈ Z(f).So, by the same argument leading to (4.1), we conclude that for
large enough T , the Qnf (x)PT (c)ρx,T are linearly independent, so there must be T0 > 0
such that T ≥ T0 implies

dimQiET (c) ≥ mi

If it were the case that for some i, dimQiET (c) > mi, then we would have

n∑
i=0

dimQiET (c) >
n∑

i=0
mi = dimET (c)

which is a contradiction. Therefore, for any 0 ≤ i ≤ n and T ≥ T0 we must have

dimQiET (c) = mi (4.2)

Now recall that D2
T f preserves the grading of Ω(M), so if s is an eigenvector of

DT f with eigenvalue µ ∈ [−c, c] then

D2
T fQis = QiD

2
T fs = µ2Qis

That is, QiET (c) is the space of eigenvectors of D2
T f |Ωi(M) with eigenvalues in [0, c].
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The proposition then follows from (4.2).

5 Proof of Morse Inequalities

Finally we can prove the Morse Inequalities (Theorem 0.2) as a consequence of
Proposition 4.3.

For any 0 ≤ i ≤ n denote by F [0,c]
T f,i ⊂ Ω(M) the vector space generated by the

eigenspaces of D2
T f |Ωi(M) with eigenvalues in [0, c]. We will assume T large enough so

that by Proposition 4.3 dimF
[0,c]
T f,i = mi. From

dT fD
2
T f = dT fd

∗
T fdT f = D2

T fdT f

and
d∗T fD

2
T f = d∗T fdT fd

∗
T f = D2

T fd
∗
T f

we see that dT f : F [0,c]
T f,i → F

[0,c]
T f,i+1 and dT f : F [0,c]

T f,i → F
[0,c]
T f,i−1, so we have a finite

dimensional subcomplex of (Ω•(M), dT f ) given by

(F [0,c]
T f,•, dT f ) : 0→ F

[0,c]
T f,0(M) dT f−−→ F

[0,c]
T f,1

dT f−−→ · · · dT f−−→ F
[0,c]
T f,n

dT f−−→ 0

By applying the Hodge decomposition theorem to this subcomplex we have that the
dimension of the i-th comohomology space, given by

ker dT F |F [0,c]
T f,i

Im dT F |F [0,c]
T f,i−1

is equal to the dimension of the kernel of the associated Laplace operator D2
T f |F [0,c]

T f,i

.

But since kerD2
T f |Ωi(M) ⊂ F

[0,c]
T f,i we see that kerD2

T f |F [0,c]
T f,i

= kerD2
T f |Ωi(M). Therefore

βi = dim
(
kerD2

T f |Ωi(M)
)

= dim
(

kerD2
T f |F [0,c]

T f,i

)
≤ dimF

[0,c]
T f,i = mi

which are the weak Morse inequalities.
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Also, from basic finite-dimensional linear algebra we have

mi = dimF
[0,c]
T f,i = dim

(
ker dT f |F [0,c]

T f,i

)
+ dim

(
Im dT f |F [0,c]

T f,i

)

= dim

 ker dT F |F [0,c]
T f,i

Im dT F |F [0,c]
T f,i−1

+ dim
(
Im dT f |F [0,c]

T f,i−1

)
+ dim

(
Im dT f |F [0,c]

T f,i

)

= βi + dim
(
Im dT f |F [0,c]

T f,i−1

)
+ dim

(
Im dT f |F [0,c]

T f,i

)

Thus, by adding all mj with alternated signs we see that

i∑
j=0

(−1)jmi−j =
i∑

j=0
(−1)jβi−j + dim

(
Im dT f |F [0,c]

T f,i

)

In particular, for 0 ≤ i ≤ n we get

i∑
j=0

(−1)jβi−j ≤
i∑

j=0
(−1)jmi−j

and for i = n, since Im dT f |F [0,c]
T f,n

= 0:

n∑
j=0

(−1)jmn−j =
n∑

j=0
(−1)jβn−j

Which are the strong Morse inequalities.
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