Math 3150 Fall 2015 HW6 Solutions

Problem 1.

(a) Observe that Y 2| na™ = =k

(b) Evaluate ) >°, o%.

(c) Evaluate Y 77 | & and > 07, 2:1"

Solution.

(a) We start with the geometric series > _0° ;2™ = L on its interval of convergence, (—1,1). Differen-
tiating this gives

(1—133)2 (1—.7:) an ’

using differentiation termwise. Multiplying this by x gives part (a).

(b) The series in part (a) converges on (—1,1), so we may evaluate both sides at z = 3, giving

> n 1/2
Z2n a-122 >

n=1
(c) Likewise, we may evaluate at x = % and x = —% to obtain
n 1/3 3 ~1/3 3
S gl 36 -2
Loz T (1-1/3)2 4 T(1+1/32 16
respectively.
O

Problem 2. Let s(x) = Z?ZO(—I)"éZTf), and c(z) = ZZO:O(—I)"%.
(a) Prove s’ = cand ¢ = —s.

(b) Prove (s? +¢?)' = 0.
(c) Prove s? + ¢ = 1.
Solution.

(a) Note that both series have infinite radius of convergence. We may differentiate termwise to get

p - L(2n+ 1)z S LT
@) = 3 e - S gy = e
and
, - oo n2nx2n—1 B o0 . x2n 1 o0 it 2n+1
o) = 31" = 3D gy = LU Gy = )



(b) Using the sum and product rules for derivatives gives
(s2(2) + (2)) = (2(@)) + (2(x)) = 2s(x)elz) — 2e(x)s(z) = 0.

(c) From part (b), s+ ¢? must be constant, and it suffices to evaluate it at any point. Choosing z = 0

gives
0 N 02n+1 0 n02n
s(0) = Z(_l) Gnii) 0, ¢(0)= Z(_l) ol = b
n=0 n=0

so that (s? + ¢?)(0) = 1, and hence (s% + ¢?)(z) = 1 for all z.

Problem 3. Let f(z) = z%sin 2 for 2 # 0 and f(0) = 0.
(a) Show that f is differentiable at each x # 0 and calculate f'(x).
(b) Use the definition to show that f/(0) = 0.

(¢) Show that f’ is not continuous at x = 0.

Solution.

(a) For z # 0, we may use the product and chain rules to compute

1 1

f(z) =2zsini — mQ(%Z)cos% = 2xsin  — cos ;.

(b) At z =0, we have

T

= |zsin1| < |z| =0,

as x — 0. Thus f is differentiable at x = 0 with f/(0) = 0.

(¢) f' is not continuous at 0, since we may construct sequences (x,) such that limx, = 0 but
lim f'(z,,) # f'(0). Indeed, let @, = 5. Then

f'(zy) = cos(2mn) =1

for all n, so lim f’(xy,) = 1 while f/(0) = 0.

Problem 4. Let f(z) = 22 for € Q and f(z) =0 for z € R\ Q.
(a) Prove f is continuous at x = 0.
(b) Prove f is discontinuous at all x # 0.

(c) Prove f is differentiable at = 0

Solution.



(a) To show continuity at 0, we must show lim,_,o f(z) = f(0) = 0. Given € > 0, let 6 = /¢; then
0 < |z —0| <& implies |f(z) — 0| < |z]* < 62 =&.

(b) Let x # 0. If z is rational, set & = |z|*>. Then for any d > 0, we may find an irrational y such that
& =yl <8, but |f () — f(y)| = |2|* > .

If z is irrational, set € = @ Then for every § > 0 we may find a rational y such that |[x —y| < ¢

and |y*> > ¢, so that |f(z) — f(y)| = [y|* > .
0

Problem 5. Suppose f is differentiable on R, 1 < f’(z) < 2 for all z € R, and f(0) = 0. Prove that
x < f(x) <2z for all x > 0.

Solution. The statement is obvious for = 0, so select x > 0, and use the mean value theorem to write
f@) = f(z) = f(0) = f'(y)(= - 0) =z f'(y)
for some y € [0, z]. Using that 1 < f'(y) < 2, we obtain
2 < f(2) = of'(y) < 22 s
Problem 6. Show that if f is integrable on [a,b], then f is integrable on every interval [c,d] C [a, b].

Solution. Let £ > 0 be given. We will show that there exists a partition P of [c, d] such that U(f, P) —
L(f,P) < e. This same property holds for the interval [a,b] by assumption; namely, there exists a
partition @ of [a,b] such that U(f,Q) — L(f,Q) < e.

We may assume without loss of generality that ¢,d € Q). (Adding these points to @ leads to a finer
partition @', for which U(f,Q") < U(f,Q) and L(f,Q’) > L(f,Q), so that U(f,Q") — L(f,Q") < ¢ still
holds.) In particular P = @ N [c,d] is then a partition of [c, d]. We have

U(f.P)— L(f.P)=U(f,Q) — L(f,Q) = > _ (M(f,I;) — m(f. 1)) | 1],

J

where the sum is over the intervals I; which are in @ but not P, and |/;| denotes the length of the
interval I;. Since

M(f,I;) —m(f,I;) =sup{f(x):z € l;} —inf{f(x):z € I;} >0,
it follows that U(f, P) — L(f,P) < U(f,Q) — L(f,Q) < e. O

Problem 7. Give an example of a function f on [0,1] that is not integrable but such that |f] is
integrable.

Solution. Let f(x) = 1 for x € Q and f(x) = —1 for x € R\ Q. Then f is not integrable since, in
any nonzero interval I, M(f,I) =1 while m(f,I) = —1, whence U(f, P) =1 and L(f, P) = —1 for all
partitions P of [0,1] and then U(f) =1 # L(f) = —1.

On the other hand, |f| = 1 is easily seen to be integrable, since U(|f|,P) = L(|f|,P) = 1 for all
partitions, so fol |f| (z)de =U(f) = L(f) = 1. O



