
Math 3150 Fall 2015 HW6 Solutions

Problem 1.

(a) Observe that
∑∞

n=1 nx
n = x

(1−x)2 .

(b) Evaluate
∑∞

n=1
n
2n .

(c) Evaluate
∑∞

n=1
n
3n and

∑∞
n=1

(−1)nn
3n .

Solution.

(a) We start with the geometric series
∑∞

n=0 x
n = 1

1−x on its interval of convergence, (−1, 1). Differen-
tiating this gives

1

(1− x)2
=
( 1

1− x

)′
=

∞∑
n=1

nxn−1,

using differentiation termwise. Multiplying this by x gives part (a).

(b) The series in part (a) converges on (−1, 1), so we may evaluate both sides at x = 1
2 , giving

∞∑
n=1

n

2n
=

1/2

(1− 1/2)2
= 2.

(c) Likewise, we may evaluate at x = 1
3 and x = −1

3 to obtain

∞∑
n=1

n

3n
=

1/3

(1− 1/3)2
=

3

4
, and

∞∑
n=1

(−1)nn

3n
=

−1/3

(1 + 1/3)2
= − 3

16
,

respectively.

Problem 2. Let s(x) =
∑∞

n=0(−1)n x2n+1

(2n+1)! and c(x) =
∑∞

n=0(−1)n x
2n

2n! .

(a) Prove s′ = c and c′ = −s.

(b) Prove (s2 + c2)′ = 0.

(c) Prove s2 + c2 = 1.

Solution.

(a) Note that both series have infinite radius of convergence. We may differentiate termwise to get

s′(x) =

∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

2n!
= c(x),

and

c′(x) =
∞∑
n=1

(−1)n
2nx2n−1

2n!
=

∞∑
n=1

(−1)n
x2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1 x2n+1

(2n+ 1)!
= −s(x).
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(b) Using the sum and product rules for derivatives gives

(s2(x) + c2(x))′ = (s2(x))′ + (c2(x))′ = 2s(x)c(x)− 2c(x)s(x) = 0.

(c) From part (b), s2 + c2 must be constant, and it suffices to evaluate it at any point. Choosing x = 0
gives

s(0) =

∞∑
n=0

(−1)n
02n+1

(2n+ 1)!
= 0, c(0) =

∞∑
n=0

(−1)n
02n

2n!
= 1,

so that (s2 + c2)(0) = 1, and hence (s2 + c2)(x) = 1 for all x.

Problem 3. Let f(x) = x2 sin 1
x for x 6= 0 and f(0) = 0.

(a) Show that f is differentiable at each x 6= 0 and calculate f ′(x).

(b) Use the definition to show that f ′(0) = 0.

(c) Show that f ′ is not continuous at x = 0.

Solution.

(a) For x 6= 0, we may use the product and chain rules to compute

f ′(x) = 2x sin 1
x − x

2( 1
x2

) cos 1
x = 2x sin 1

x − cos 1
x .

(b) At x = 0, we have ∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ =

∣∣∣∣∣x2 sin 1
x

x

∣∣∣∣∣ =
∣∣x sin 1

x

∣∣ ≤ |x| → 0,

as x→ 0. Thus f is differentiable at x = 0 with f ′(0) = 0.

(c) f ′ is not continuous at 0, since we may construct sequences (xn) such that limxn = 0 but
lim f ′(xn) 6= f ′(0). Indeed, let xn = 1

2πn . Then

f ′(xn) = cos(2πn) = 1

for all n, so lim f ′(xn) = 1 while f ′(0) = 0.

Problem 4. Let f(x) = x2 for x ∈ Q and f(x) = 0 for x ∈ R \Q.

(a) Prove f is continuous at x = 0.

(b) Prove f is discontinuous at all x 6= 0.

(c) Prove f is differentiable at x = 0

Solution.
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(a) To show continuity at 0, we must show limx→0 f(x) = f(0) = 0. Given ε > 0, let δ =
√
ε; then

0 < |x− 0| < δ implies |f(x)− 0| ≤ |x|2 < δ2 = ε.

(b) Let x 6= 0. If x is rational, set ε = |x|2. Then for any δ > 0, we may find an irrational y such that
|x− y| < δ, but |f(x)− f(y)| = |x|2 ≥ ε.

If x is irrational, set ε = |x|
2 . Then for every δ > 0 we may find a rational y such that |x− y| < δ

and |y|2 ≥ ε, so that |f(x)− f(y)| = |y|2 ≥ ε.

Problem 5. Suppose f is differentiable on R, 1 ≤ f ′(x) ≤ 2 for all x ∈ R, and f(0) = 0. Prove that
x ≤ f(x) ≤ 2x for all x ≥ 0.

Solution. The statement is obvious for x = 0, so select x > 0, and use the mean value theorem to write

f(x) = f(x)− f(0) = f ′(y)(x− 0) = x f ′(y)

for some y ∈ [0, x]. Using that 1 ≤ f ′(y) ≤ 2, we obtain

x ≤ f(x) = xf ′(y) ≤ 2x.

Problem 6. Show that if f is integrable on [a, b], then f is integrable on every interval [c, d] ⊆ [a, b].

Solution. Let ε > 0 be given. We will show that there exists a partition P of [c, d] such that U(f, P )−
L(f, P ) < ε. This same property holds for the interval [a, b] by assumption; namely, there exists a
partition Q of [a, b] such that U(f,Q)− L(f,Q) < ε.

We may assume without loss of generality that c, d ∈ Q. (Adding these points to Q leads to a finer
partition Q′, for which U(f,Q′) ≤ U(f,Q) and L(f,Q′) ≥ L(f,Q), so that U(f,Q′)− L(f,Q′) < ε still
holds.) In particular P = Q ∩ [c, d] is then a partition of [c, d]. We have

U(f, P )− L(f, P ) = U(f,Q)− L(f,Q)−
∑
j

(
M(f, Ij)−m(f, Ij)

)
|Ij | ,

where the sum is over the intervals Ij which are in Q but not P , and |Ij | denotes the length of the
interval Ij . Since

M(f, Ij)−m(f, Ij) = sup {f(x) : x ∈ Ij} − inf {f(x) : x ∈ Ij} ≥ 0,

it follows that U(f, P )− L(f, P ) ≤ U(f,Q)− L(f,Q) < ε.

Problem 7. Give an example of a function f on [0, 1] that is not integrable but such that |f | is
integrable.

Solution. Let f(x) = 1 for x ∈ Q and f(x) = −1 for x ∈ R \ Q. Then f is not integrable since, in
any nonzero interval I, M(f, I) = 1 while m(f, I) = −1, whence U(f, P ) = 1 and L(f, P ) = −1 for all
partitions P of [0, 1] and then U(f) = 1 6= L(f) = −1.

On the other hand, |f | = 1 is easily seen to be integrable, since U(|f | , P ) = L(|f | , P ) = 1 for all
partitions, so

∫ 1
0 |f | (x) dx = U(f) = L(f) = 1.
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