Math 3150 Fall 2015 HW5 Solutions

Problem 1. For each of the following series, find the radius of convergence and the exact interval of convergence.

- (a) $\sum \sqrt{n}x^n$
- (b) $\sum n^{-\sqrt{n}}x^n$
- (c) $\sum x^{n!}$
- (d) $\sum \frac{3^n}{\sqrt{n}} x^{2n+1}$

Solution.

- (a) Here $a_n = \sqrt{n}$ and we may apply the ratio test: $\left|\frac{a_{n+1}}{a_n}\right| = \sqrt{\frac{n+1}{n}} \to 1$, which implies that $\lim |a_n|^{1/n} \to 1$ also. Hence the radius of convergence is 1. The series $\sum \sqrt{n}$ and $\sum \sqrt{n}(-1)^n$ both diverge (the associated sequences don't have limit 0), so the power series converges on (-1,1).
- (b) We apply the root test directly: $a_n^{1/n} = 1/(n^{1/\sqrt{n}})$, and an argument similar to the proof of Theorem 9.7.(c) shows that $n^{1/\sqrt{n}} \to 1$, so $\lim a_n^{1/n} = 1$ and the radius of convergence is also 1. At x = -1, the series $\sum n^{-\sqrt{n}}(-1)^n$ converges by the alternating series test, since $n^{-\sqrt{n}} \to 0$. At x = +1, the series $\sum n^{-\sqrt{n}}$ converges by comparison to $\sum \frac{1}{n^2}$, since $n^{\sqrt{n}} > n^2$ for sufficiently large n. The power series converges on [-1,1].
- (c) We may view $\sum x^{n!}$ as the power series $\sum a_k x^k$, where $a_k = 0$ unless k = n!, in which case $a_k = 1$. Then $\lim \sup |a_k|^{1/k} = 1$, so the radius of convergence is 1. If |x| = 1, then $|x|^{n!} \not\to 0$, and the series diverges. Thus the interval of convergence is (-1,1).
- (d) Relabeling the series as $\sum_{k} a_k x^k$, where

$$a_k = \begin{cases} \frac{3^{(k-1)/2}}{\sqrt{\frac{k-1}{2}}} & k \text{ odd} \\ 0 & k \text{ even} \end{cases}$$

we can use the root test to compute

$$\begin{split} \lim\sup |a_k|^{1/k} &= \lim |a_{2n+1}|^{1/(2n+1)} \\ &= \lim \left(\frac{3^n}{\sqrt{n}}\right)^{1/(2n+1)} \\ &= \lim \frac{3^{n/(2n+1)}}{n^{1/(4n+2)}} \\ &= \lim 3^{1/2} (3n)^{-1/(4n+2)} = 3^{1/2}, \end{split}$$

where we use a similar proof to that of Theorem 9.7.(c) to show $(3n)^{1/(4n+2)} \to 1$. Thus the radius of convergence is $R = 1/\sqrt{3}$.

At x = R, the series

$$\sum_{n} \frac{3^n}{\sqrt{n}} \left(\frac{1}{\sqrt{3}}\right)^{2n+1} = \sum_{n} \frac{1}{\sqrt{3n}}$$

diverges since it is (up to a constant) of the form $\sum n^{-p}$ for $p \ge 1$. Likewise, at x = -R, the series

$$\sum_{n} \frac{3^{n}}{\sqrt{n}} \left(\frac{-1}{\sqrt{3}}\right)^{2n+1} = \sum_{n} \frac{-11}{\sqrt{3n}}$$

also diverges. Thus the series converges on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Problem 2.

- (a) Suppose $\sum a_n x^n$ has finite radius of convergence R and $a_n \geq 0$ for all n. Show that if the series converges at R, then it also converges at -R.
- (b) Give an example of a power series whose interval of convergence is exactly (-1,1].

Solution.

- (a) By assumption $\sum a_n R^n$ converges, which means in particular that the sequence $s_n = a_n R^n$ converges to 0. Then by the alternating series test, $\sum a_n (-R)^n = \sum s_n (-1)^n$ converges.
- (b) The power series $\sum a_n x^n$ where $a_n = \frac{(-1)^n}{n}$ is an example.

Problem 3. For $x \in [0, \infty)$ let $f_n(x) = x/n$.

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
- (b) Determine whether $f_n \to f$ uniformly on [0,1].
- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.

Solution.

- (a) Fixing $x \in [0, \infty)$, we have $x/n \to 0$, so f(x) = 0 for all x, as the pointwise limit of (f_n) .
- (b) The convergence is uniform on [0,1]. Indeed, given $\varepsilon > 0$, we can choose $N \in \mathbb{N}$ such that $N > 1/\varepsilon$. If $n \geq N$, then

$$\left|\frac{x}{n}-0\right|=\frac{x}{n}\leq\frac{1}{N}<\varepsilon.$$

(c) The convergence is not uniform on $[0, \infty)$. To see this, recall that uniform convergence is equivalent to the statement that the sequence $b_n \to 0$, where

$$b_n = \sup \{ |f_n(x) - f(x)| : x \in [0, \infty) \}.$$

But clearly for each n, $b_n = +\infty$, so this is not possible.

Problem 4. Let $f_n(x) = (x - \frac{1}{n})^2$ for $x \in [0, 1]$.

- (a) Does (f_n) converge pointwise on [0,1]? If so, find the limit function f(x).
- (b) Does (f_n) converge uniformly on [0,1]? Prove your assertion.

Solution.

- (a) The sequence does converge uniformly: fixing $x \in [0,1]$, the sequence $(x+\frac{1}{n})^2$ converges to x^2 , so $f(x)=x^2$ on [0,1].
- (b) The convergence is also uniform: indeed,

$$\left| \left(x - \frac{1}{n} \right)^2 - x^2 \right| = \left| \frac{1}{n^2} - \frac{2x}{n} \right| \le \left| \frac{1}{n^2} - \frac{2}{n} \right|$$

for all $x \in [0, 1]$, and the latter sequence (which is independent of x), converges to 0.

Problem 5.

- (a) Show that if $\sum |a_k| < \infty$, then $\sum a_k x^k$ converges uniformly on [-1,1] to a continuous function.
- (b) Does $\sum \frac{1}{n^2} x^n$ represent a continuous function on [-1,1]?

Solution.

- (a) Consider the series $\sum g_k(x)$, where $g_k(x) = a_k x^k$. The Weierstrass M-test says that if we can find a sequence M_k such that $\sup_x |g_k(x)| \leq M_k$ and $\sum M_k$ converges, then $\sum g_k(x)$ converges uniformly. In this case we may take $M_k = |a_k|$, which converges by hypotheses. The partial sums $\sum_{k=1}^n a_k x^k$ are polynomials and therefore continuous on [-1,1], and since the convergence is uniform the limit $\sum a_k x^k$ is continuous on [-1,1] as well.
- (b) Yes, by the above, $\sum \left| \frac{1}{n^2} \right| = \sum \frac{1}{n^2}$ converges, so $\sum \frac{1}{n^2} x^n$ is a continuous function on [-1,1].