
Math 3150 Fall 2015 HW2 Solutions

Problem 1. Let (sn) be a sequence that converges

(a) Show that if sn ≥ a for all but finitely many n, then lim sn ≥ a.
(b) Show that if sn ≤ b for all but finitely many n, then lim sn ≤ b.
(c) Conclude that if all but finitely many sn belong to [a, b], then lim sn ∈ [a, b].

Solution.

(a) Let m be the largest integer such that sm < a and let s = lim sn. Proceeding by contradiction,
suppose that s < a. Choose ε such that 0 < ε < a− s. Since sn → s, there exists N ∈ N such that
for all n ≥ N ,

sn < s + ε < s + a− s = a.

In particular, this holds for n > max {N,m}, but then sn < a contradicts maximality of m.
(b) Let m be the smallest integer such that sm > b and let s = lim sn. Proceeding by contradiction,

suppose that s > b. Choose ε such that 0 < ε < s− b. Since sn → s, there exists N ∈ N such that
for all n ≥ N ,

b = s− (s− b) < s− ε < sn.

In particular, this holds for n > max {N,m}, but then sn > b contradicts maximality of m.
(c) By part (a), s = lim sn ≥ a and by part (b) s ≤ b, so s ∈ [a, b].

�

Problem 2. Let x1 = 1 and xn+1 = 3x2n for n ≥ 1.

(a) Show if a = limxn, then a = 1
3 or a = 0.

(b) Does limxn exist? Explain.
(c) Discuss the apparent contradiction between parts (a) and (b).

Solution.

(a) Suppose a = limxn exists. Then invoking the limit theorem for the identity xn+1 = 3x2n gives

lim
n→∞

xn+1 = 3( lim
n→∞

xn)2 =⇒ a = 3a2.

The only two solutions to this equation are a = 0 or a = 1
3 .

(b) The limit does not exist. In fact, we can show xn+1 ≥ 3n for all n (or a lower bound which grows even
more quickly if we want). Indeed, x2 = 3, and by induction, xn+1 = 3x2n ≥ 3(3n−1)2 = 32n−1 ≥ 3n.
Since 3n diverges to infinity, it follows that xn must also.

(c) The application of the limit theorem lim(x2n) = (limxn)2 in part (a) is only valid in case that limxn
is a finite real number. �

Problem 3. Assume all sn 6= 0 and the limit L = lim
∣∣∣ sn+1

sn

∣∣∣ exists.

(a) Show that if L < 1, then lim sn = 0.
(b) Show that if L > 1, then lim |sn| = +∞.

Solution.

(a) Define the sequence rn =
∣∣∣ sn+1

sn

∣∣∣ of positive real numbers, and suppose that lim rn = L < 1. Choose

a ∈ R such that L < a < 1, and let ε = a− L. Since rn −→ L, there exists N ∈ N such that for all
n ≥ N ,

rn < L + ε = a.
1
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This implies |sn+1| < a |sn| for all n ≥ N , and in particular |sN+1| < a |sN |. This is the base case
for an induction, where |sN+k| < ak |sN | implies |sN+k+1| < a |sN+k| < ak+1 |sN |, which may be
rewritten as the statement |sn| < an−N |sN | for all n > N . We therefore have

0 ≤ |sn| ≤ c an ∀ n > N,

where c = |sN |
aN

is a constant. Since a < 1, the sequence an converges to 0, and c · an → 0 also. By
the squeeze lemma, it follows that |sn| → 0 which implies sn → 0.

(b) Define the sequece tn = 1
|sn| . Then supposing that lim

∣∣∣ sn+1

sn

∣∣∣ = L > 1, it follows that lim
∣∣∣ tn+1

tn

∣∣∣ =

L−1 < 1. By part (a), lim tn = 0, and by Theorem 9.10, it follows that lim |sn| = +∞. �

Problem 4.

(a) Let (sn) be a sequence in R such that

|sn+1 − sn| < 2−n for all n ∈ N.
Prove that (sn) is a Cauchy sequence and hence a convergent sequence.

(b) Is the result in (a) true if we only assume |sn+1 − sn| < 1
n for all n ∈ N?

Solution.

(a) Let n, k ∈ N. Consider |sn+k − sn|. Adding and subtracting sn+k−1, sn+k−2, . . . , sn+1 and employ-
ing the triangle inequality, we have

|sn+k − sn| ≤ |sn+k − sn+k−1|+ |sn+k−1 − sn+k−2|+ · · ·+ |sn+1 − sn|

< 2−n + 2−(n+1) + · · ·+ 2−(n+k−1).

Using the identity 1 + r + · · ·+ rl = 1+rl+1

1−r for r < 1 in the case r = 1
2 , l = k − 1, we have

2−n + · · ·+ 2−(n+k−1) = 2−n
1 + 2−k

1
2

< 2−n
1
1
2

= 2−n+1,

thus

(1) |sn+k − sn| < 2−n+1.

To prove that sn is Cauchy, given ε > 0 choose N ∈ N such that 2−N+1 < ε. (This is possible
since 2−n+1 → 0 as n → ∞.) Then for any pair m,n ≥ N , (without loss of generality, m ≥ n so
m = n + k for some k ≥ 0),

|sm − sn| = |sn+k − sn| < 2−n+1 ≤ 2−N+1 < ε.

Since (sn) is Cauchy and R is complete, we conclude that (sn) converges.
(b) The result is false if we only assume |sn+1 − sn| < 1

n . As a counter-example, let sn = 1 + 1
2 + · · ·+ 1

n

(the partial summations of the harmonic series). Then |sn+1 − sn| = 1
n+1 < 1

n , but the sequence

(sn) diverges to infinity. (One way to see this is as follows:

s2k = 1 + (12) + (13 + 1
4) + (15 + · · ·+ 1

8) + (19 + · · ·+ 1
16) + · · ·+ ( 1

2k−1+1
+ · · ·+ 1

2k
)

≥ 1 + (12) + (14 + 1
4) + (18 + · · ·+ 1

8) + ( 1
16 + · · ·+ 1

16) + · · ·+ ( 1
2k

+ · · ·+ 1
2k

)

= 1 + (12) + (24) + (48) + ( 8
16) + · · ·+ 2k−1

2k
=

k + 2

2
.

Given any M > 0 we can choose a k such that k+2
2 > M , and so sn > M for n = 2k; hence

sn → +∞.) �

Problem 5. Let s1 = 1 and sn+1 = 1
3(sn + 1) for n ≥ 1.

(a) Find s2, s3 and s4.
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(b) Use induction to show sn > 1
2 for all n.

(c) Show (sn) is a decreasing sequence.
(d) Show lim sn exists and find lim sn.

Solution.

(a) s2 = 2
3 , s3 = 5

9 , s4 = 14
27 .

(b) s1 = 1 > 1
2 holds. By induction, supposing that sn > 1

2 , we have

sn+1 = 1
3(sn + 1) > 1

3(12 + 1) = 1
2 ,

so sn > 1
2 for all n.

(c) Let rn = sn − sn+1. We will show by induction that rn ≥ 0 for all n. We have r1 = 1− 2
3 = 1

3 > 0.
Assuming rn ≥ 0,

rn+1 = sn − sn+1 = 1
3

(
(sn−1 + 1)− (sn + 1)

)
= 1

3

(
sn−1 − sn

)
= 1

3rn ≥ 0,

completing the inductive step. Thus (sn) is decreasing.
Alternatively, (not using induction),

sn > 1
2

=⇒ 2
3sn > 1

3

=⇒ 1
3(sn + 1) < sn

=⇒ sn+1 < sn,

which holds for all n by the previous part.
(d) Since (sn) is a decreasing sequence which is bounded below, it converges to some s = lim sn. Using

the limit theorem,
lim sn+1 = 1

3(lim sn + 1)

=⇒ s = 1
3(s + 1)

=⇒ s = 1
2 . �

Problem 6. Let (sn) be the sequence of numbers in Fig. 11.2 in the book.

(a) Find the set S of subsequential limits of (sn).
(b) Determine lim sup sn and lim inf sn.

Solution.

(a) We claim that S =
{

1
n : n ∈ N

}
∪ {0}. Indeed, for any 1

n , there are infinitely many k ∈ N such that

sk = 1
n , which implies that (sn) has a constant subsequence ( 1

n ,
1
n , . . .). In the case of 0, for any

ε > 0, there are infinitely many sk such that |sk − 0| < ε; indeed, we may take n such that 1
n < ε

and consider the constant subsequence ( 1
n ,

1
n , . . .) again. There are no other subsequential limits.

(b) lim inf sn = inf S = 0 and lim sup sn = supS = 1. �


