Math 3150 Fall 2015 HW2 Solutions

Problem 1. Let (s,) be a sequence that converges

(a) Show that if s, > a for all but finitely many n, then lims, > a.
(b) Show that if s, < b for all but finitely many n, then lim s,, < b.

(¢) Conclude that if all but finitely many s,, belong to [a,b], then lim s, € [a,b].

Solution.

(a) Let m be the largest integer such that s, < a and let s = lims,. Proceeding by contradiction,
suppose that s < a. Choose € such that 0 < € < a — s. Since s, — s, there exists N € N such that
for all n > N,
Sp,<s+e<s+a—s=a.
In particular, this holds for n > max { N, m}, but then s, < a contradicts maximality of m.
(b) Let m be the smallest integer such that s, > b and let s = lim s,. Proceeding by contradiction,
suppose that s > b. Choose € such that 0 < ¢ < s —b. Since s, — s, there exists N € N such that
for all n > N,
b=s—(s—b) <s—e<sp.
In particular, this holds for n > max { N, m}, but then s,, > b contradicts maximality of m.
(c) By part (a), s =lims, > a and by part (b) s < b, so s € [a,b].

Problem 2. Let 1 =1 and 41 = 3:5% forn > 1.

(a) Show if @ = limzy, then a = % or a = 0.
(b) Does lim x,, exist? Explain.

(c) Discuss the apparent contradiction between parts (a) and (b).

Solution.
(a) Suppose a = lim z,, exists. Then invoking the limit theorem for the identity z,,1 = 322 gives

lim 2,41 = 3( lim z,)?> = a = 3d%
n—oo n—oo

The only two solutions to this equation are a = 0 or a = %

(b) The limit does not exist. In fact, we can show x,,4; > 3" for all n (or a lower bound which grows even
more quickly if we want). Indeed, 2 = 3, and by induction, z, 11 = 322 > 3(3""1)2 = 32»~1 > 37,
Since 3™ diverges to infinity, it follows that x,, must also.

(c) The application of the limit theorem lim(z2) = (lim x,,)? in part (a) is only valid in case that lim z,,
is a finite real number. n

Sn+1
Sn

Problem 3. Assume all s, # 0 and the limit L = lim

(a) Show that if L < 1, then lims,, = 0.
(b) Show that if L > 1, then lim |s,| = +o0.

exists.

Solution.

(a) Define the sequence 1, = ’ of positive real numbers, and suppose that limr, = L < 1. Choose

a € Rsuch that L <a < 1, and let e = a — L. Since r,, — L, there exists N € N such that for all
n>N,

Sn41
S

e < L+¢e=a.
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This implies |sp41| < a|sy| for all n > N, and in particular |sy41| < a|sy|. This is the base case
for an induction, where |sy;x| < a” |sy| implies |syyxi1| < a|syix| < a*F1|sy|, which may be
rewritten as the statement |s,| < "~ |sy| for all n > N. We therefore have

0<|sp| <ca”™ Vn>N,
where ¢ = E—%l is a constant. Since a < 1, the sequence a™ converges to 0, and ¢ - a™ — 0 also. By
the squeeze lemma, it follows that |s,| — 0 which implies s,, — 0.

(b) Define the sequece t,, = ﬁ Then supposing that lim S’;% = L > 1, it follows that lim % =
L~! < 1. By part (a), limt, = 0, and by Theorem 9.10, it follows that lim |s,| = +oo. O
Problem 4.
(a) Let (sy) be a sequence in R such that
|Spt1 — sn| <27 for all n € N.
Prove that (s,) is a Cauchy sequence and hence a convergent sequence.
(b) Is the result in (a) true if we only assume |s,1 — s,| < 2 for all n € N?
Solution.
(a) Let n,k € N. Consider |s;,+x — Sn|. Adding and subtracting S, 1x—1, Snt+k—2, - - - » Sn+1 and employ-

ing the triangle inequality, we have

‘SnJrk - Sn| < |Sn+k - SnJrkfl‘ + ’3n+k71 - 5n+k72| +--+ ’3n+1 - Sn‘
< 2—71 + 2—(n+1) + - + 2—(714‘](:—1)'

Using the identity 1 +7r +--- 47l = % for r < 1 in the case r = %,l:k—l, we have
1+27% 1
2 R gl T2 genn geni,
2 2
thus
(1) |Snak — sn| < 27"

To prove that s, is Cauchy, given ¢ > 0 choose N € N such that 2=V*! < ¢ (This is possible
since 27! — 0 as n — o00.) Then for any pair m,n > N, (without loss of generality, m > n so
m = n + k for some k > 0),

|Sm — Sn| = [Sn+k — Sn| < o7l < 97 NHL

Since (sy,) is Cauchy and R is complete, we conclude that (s,) converges.
(b) The result is false if we only assume |sp+1 — Sn| < % As a counter-example, let s, = 1+ % +---+ %
(the partial summations of the harmonic series). Then |s,+1 — sp| = , but the sequence

(sn) diverges to infinity. (One way to see this is as follows:
s =1+ +G+D+E++H+GE+ A+ )+ (=g o+ )
>1+()+G+D+GE+ )+ (F+ )+ G+t )

-1 k+2
=1+ G+ O+ @+ )+ =

Given any M > 0 we can choose a k such that % > M, and so s, > M for n = 2, hence
Sp — +00.) O

1 1
n+1<ﬁ

Problem 5. Let s1 =1 and s,41 = %(sn +1) forn > 1.
(a) Find s9, s3 and sy4.



(b) Use induction to show s, > % for all n.
(c) Show (sy) is a decreasing sequence.
(d) Show lim s,, exists and find lim s,,.

Solution.

(a) 8223,3328,342%-

(b) s1=1> % holds. By induction, supposing that s, > %, we have
sn1 = 503 +1) > 3G +1) = 3,

SO Sy > % for all n.
(c) Let ry, = s, — Spy1. We will show by induction that 7, > 0 for all n. We have r; =1 — % = % > 0.
Assuming r,, > 0,

Tni1 = 5n — Sn41 = 5 ((Sn—1+1) — (85, + 1)) = 2 (sp-1 — 8n) = 270 >0,

completing the inductive step. Thus (s, ) is decreasing.
Alternatively, (not using induction),

Sp >

= 25, >

[SUI I

= L(sn+1) <sp
— Sp+1 < Sn,

which holds for all n by the previous part.
(d) Since (s,) is a decreasing sequence which is bounded below, it converges to some s = lim s,,. Using
the limit theorem,

lim 8,11 = %(limsn—{—l)
= s=1(s+1)
— s:%. O

Problem 6. Let (s,) be the sequence of numbers in Fig. 11.2 in the book.

(a) Find the set S of subsequential limits of (sy,).
(b) Determine limsup s,, and liminf s,,.

Solution.

(a) We claim that S = {1 :n e N} U{0}. Indeed, for any X, there are infinitely many k € N such that
%, %, ...). In the case of 0, for any
e > 0, there are infinitely many s such that |s; — 0| < ¢; indeed, we may take n such that % <e€

and consider the constant subsequence (%, %, ...) again. There are no other subsequential limits.

(b) liminfs, =infS =0 and limsups,, =supS = 1. O

s = =, which implies that (s,) has a constant subsequence (



