MATH 3150 – HOMEWORK 9

Problem 1 (p. 191, #4). Let $f : A \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ be continuous, $x, y \in A$ and $c : [0, 1] \longrightarrow A \subset \mathbb{R}^n$ be a continuous curve joining x and y. Show that along this curve, f attains its maximum and minimum values (among all values along the curve).

Problem 2 (p. 193, #3). Let $f : [0,1] \rightarrow [0,1]$ be continuous. Prove that f has a fixed point (i.e. a point $x \in [0,1]$ such that f(x) = x).

Problem 3 (p. 196, #2). Prove that f(x) = 1/x is uniformly continuous on $[a, \infty)$ for any a > 0.

Problem 4 (p. 232, #12). A map $f : A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is called *Lipschitz on A* if there is a constant $L \ge 0$ such that $||f(x) - f(y)|| \le L ||x - y||$ for all $x, y \in A$.

- (a) Show that a Lipschitz map is uniformly continuous.
- (b) Find a bounded continuous function $f : \mathbb{R} \longrightarrow \mathbb{R}$ that is not uniformly continuous and hence is not Lipschitz.
- (c) Is the sum of two Lipschitz functions again a Lipschitz function?
- (d) Is the product of two Lipschitz functions again a Lipschitz function?
- (e) Is the sum of two uniformly continuous functions uniformly continuous?
- (f) Is the product of two uniformly continuous functions uniformly continuous?