MATH 3150 – HOMEWORK 8

Problem 1 (p. 184, #1). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be continuous. Which of the following sets are necessarily closed, open, compact, or connected?

- (a) $\{x \in \mathbb{R} \mid f(x) = 0\}.$
- (b) $\{x \in \mathbb{R} \mid f(x) > 1\}.$
- (c) $\{f(x) \in \mathbb{R} \mid x \ge 0\}.$
- (d) $\{f(x) \in \mathbb{R} \mid 0 \le x \le 1\}.$

Problem 2 (p. 184, #3). Give an example of a continuous map $f : \mathbb{R} \longrightarrow \mathbb{R}$ and a closed subset $B \subset \mathbb{R}$ such that f(B) is not closed. Is this possible if B is bounded as well?

Problem 3 (p. 231, #1).

- (a) Prove directly (i.e. with ' ε 's and ' δ 's) that the function $1/x^2$ is continuous on $(0, \infty)$.
- (b) A constant function $f : A \longrightarrow \mathbb{R}^m$ is a function such that f(x) = f(y) for all $x, y \in A$. Show that f is continuous.
- (c) Is the function $f(y) = 1/(y^4 + y^2 + 1)$ continuous? Justify your answer.

Problem 4 (p. 232, #7). Consider a compact set $B \subset \mathbb{R}^n$ and let $f : B \longrightarrow \mathbb{R}^m$ be continuous and one-to-one (injective). Then prove that $f^{-1} : f(B) \longrightarrow B$ is continuous. Show by counterexample that this may fail if B is not compact. (To find a counterexample, it is necessary to take m > 1.)

Problem 5 (p. 232, #9). Prove the following "gluing lemma": Let $f : [a, b] \longrightarrow \mathbb{R}^m$ and $g : [b, c] \longrightarrow \mathbb{R}^m$ be continuous, and such that f(b) = g(b). Define $h : [a, c] \longrightarrow \mathbb{R}^m$ by h = f on [a, b] and h = g on [b, c]. Then h is continuous. Generalize this result to sets $A, B \subset (M, d)$ in a metric space, with functions $f : A \longrightarrow (N, \rho)$ and $g : B \longrightarrow (N, \rho)$.