
PROOFS BY INDUCTION AND CONTRADICTION, AND

WELL-ORDERING OF N

1. Induction

One of the most important properties of the set

N = {0, 1, 2, . . .}

of natural numbers is the principle of mathematical induction:

Principle of Induction. If S ⊆ N is a subset of the natural numbers such that

(i) 0 ∈ S, and
(ii) whenever k ∈ S, then k + 1 ∈ S,

then S = N.

Proofs which use this property are called ‘proofs by induction,’ and usually have
a common form. The goal is to prove that some property or statement P(k), holds
for all k ∈ N, where the property itself depends on k. First one proves the base
case, that P(0) holds (or sometimes P(1) instead of or in addition to P(0)). Then
one shows the inductive case (or induction step), which is to prove that if P(k)
holds, then P(k + 1) must hold as well. Once these two things have been shown,
the proof is complete, since then the set

S = {k ∈ N : P(k) holds}

must be all of N. While proving the inductive step, one often refers to the assump-
tion that P(k) is true as the inductive hypothesis.

Here is an example.

Proposition. For all k ∈ N,

0 + 1 + · · ·+ k =
k(k + 1)

2
.

Proof. In this example P(k) is the statement that the equation

(1) 0 + 1 + · · ·+ k =
k(k + 1)

2

is true. We prove the base case by hand, which is easy enough:

P(0) : 0 =
0(1)

2

is true indeed.
To prove the inductive step, we now assume that the equation (1) holds, and use

this to try and prove P(k + 1). So consider the sum

0 + 1 + · · ·+ (k + 1) = (0 + 1 + · · ·+ k) + (k + 1).
1
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By the inductive hypothesis (1), it follows that this is equal to

0 + 1 + · · ·+ (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
.

so the inductive step has been proved. �

1.1. Strong induction. We can also use the principle of induction to prove a
similar result, variously called the ‘principle of complete induction’ or the ‘principle
of strong induction.’

Proposition (Principle of strong induction). If S ⊂ N is a subset of the natural
numbers such that

(i) 0 ∈ S, and
(ii) whenever {0, . . . , k} ⊂ S, then k + 1 ∈ S,

then S = N.

Remark. Note the difference from the principle of induction above. In the second
property we require the stronger assumption that not only is k in S but that in
fact n ∈ S for all of the numbers 0 ≤ n ≤ k.

Proof. Instead of the set S, we will consider the set

S0 = {k ∈ N : {0, 1, . . . , k} ⊂ S}

of those numbers which, along with all of their preceding numbers, lie in S. Note
that S0 is a subset of S, so if we show that S0 = N, then we must have S = N also.

Proceeding by induction, we have 0 ∈ S0 by the assumption that 0 ∈ S, which
furnishes the base case.

For the inductive step, assume that k ∈ S0. Observe that this is equivalent to the
assumption that {0, 1, . . . , k} ⊂ S, so that by the second hypothesis on S it follows
that {0, 1, . . . , k + 1} ⊂ S. But this is equivalent to the statement that k + 1 ∈ S0,
so it follows by induction that S0 = N. �

We can now use this alternate principle of strong induction for proofs. To prove
a statement of the form “P(k) holds for all k ∈ N” by strong induction, you prove
the base case as before, but in the inductive step you are then allowed to make the
stronger assumption that, not only does P(k) hold, but P(n) holds as well for all
0 ≤ n ≤ k. We demonstrate such a proof below, which combines another technique
— proof by contradiction.

2. Contradiction

Proof by contradiction is based on the following bit of logic. Suppose A and B
are mathematical statements, either true or false. Then the statement

A =⇒ B,
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which is read “if A is true, then B is true”, is logically equivalent to the contrapos-
itive statement

not B =⇒ not A,
i.e. “if B is false, then A is false.” (Note that these are not equivalent to the
statements ‘B =⇒ A’ or ‘not A =⇒ not B’.)

Thus if A is a set of assumptions and B is a conclusion we are trying to prove,
we may as well make the assumption that B is false, and try and prove that one of
the assumptions in A must fail1.

We now combine these proof techniques to prove that N is well-ordered.

Proposition (Well-ordering of N). N has the ‘well-ordering property’, which means
that every nonempty subset has a smallest element. In other words, if S ⊂ N is a
nonempty subset, then there exists an s0 ∈ S such that

(2) s0 ≤ x, for every x ∈ S.

Remark. Our collection of assumptions is that S ⊂ N and S 6= ∅. Our conclusion
is that there exists s0 ∈ S with the property (2).

Proof. Proceeding by contradiction, suppose that S has no smallest element. Let

T = N \ S = {x ∈ N : x /∈ S}
be the set of numbers not in S. We will show, by strong induction, that T = N, so
that S = ∅, which contradicts the assumption that S is not empty.

For the base case of the induction, note that 0 ∈ T , for if 0 was in S then it
would function as a least element2.

For the inductitve step, we may assume the strong induction hypothesis that
n ∈ T for all 0 ≤ n ≤ k. In other words, none of the numbers 0, 1, . . . , k lie in S.
Now if k+1 was in S, it would be a least element, so we must have k+1 ∈ T instead,
which completes the inductive step. We conclude, based on strong induction, that
T = N, which contradicts the assumption that S is non-empty as noted above. �

1Sometimes A may include not only the explicit assumptions made in the statement of the
theorem, but all of the other axioms and theorems that we have developed prior to this point —
in other words, it is enough to show that ‘not B’, along with the given assumptions, implies that

something you know to be true would have to be false.
2Note that this sentance itself is a self-contained example of reasoning by contradiction!
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