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From the point of view of an analyst, one of the most delightful things about
complex K-theory is that it has a nice realization by analytical objects, namely
(pseudo)differential operators and their Fredholm indices. This connection allows
quite a bit of interesting information to flow both ways: from analysis to topology
and vice versa.

This talk will try and give a sketch of this picture, and consists of three parts
or themes. The first is “the Gysin map as the index,” describing the families index
theorem of Atiyah and Singer, and how the pushforward along a fibration in K-
theory can be realized as the index of a family of operators. The second is “spinc

as an orientation,” in which I discuss Clifford algebras, spin and spinc structures,
Dirac operators and the analytic realization of the Thom isomorphism for complex
K-theory. Finally (I did not have time to get to this part in the actual Talbot talk) I
will discuss the constructions leading to higher index maps (i.e. K1 instead ofK0; of
course this is more interesting for real K-theory than for complex K-theory), namely
Clifford-linear differential and Fredholm operators. The best reference for almost
everything in this talk is the wonderful book [LM89] by Lawson and Michelson. I
cannot recommend this book highly enough. I will also try and give references to
original sources (essentially all of which involve Atiyah as an author).

1. Some notation and facts

First let us get down some notation and facts about K-theory that will be of use
in the following. Let V −→ X be a (not necessarily complex) vector bundle. There
are many ways of constructing the Thom space of V , which will be denoted XV :

XV := DV/SV = V /∂V = P(V ⊕ 1)/∞.

The first space denotes the unit disk bundle of V (with respect to some choice of
metric) quotiented out by the unit sphere bundle; the second denotes the radial
compactification of V quotiented out by its boundary; the third denotes the pro-
jective bundle1 associated to V ⊕ 1 (where 1 is the trivial complex line bundle),
modulo the section at infinity. Indeed we could take any compactification of V
modulo the points added at infinity.

In any cohomology theory, the reduced cohomology of XV is of interest. In
index theory, however, we prefer to think of the K-theory of XV as compactly

1Note that this constructs the fiberwise one point compactification of V .
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supported K-theory2 of the space V :

K∗c (V ) := K̃∗(XV ) = K∗(V , ∂V ).

There is a convenient representation of relative even K-theory of a pair (X,A),
where A ⊂ X is a nice enough subset, known as the difference bundle construc-
tion:

K0(X,A) =
{
E,F, σ ; σ|A : E

∼=−→ F
}
/ ∼,

where E,F −→ X are vector bundles and σ : E −→ F is a bundle map covering the
identity on X, which restricts to an isomorphism over A. The equivalence relations
amount to stabilization and homotopy. Intuitively this should be clear; if E and F
are isomorphic over A, then, [E]− [F ] should be trivial in K-theory when restricted
to A.

Unpacking this in the case of compactly supported K-theory for V , we conclude
that we can represent K0

c (V ) by

K0
c (V ) =

{
[π∗E, π∗F, σ] ; σV \0 : π∗E

∼=−→ π∗F
}
,

where π : V −→ X is the projection and 0 denotes the zero section. Indeed, the
pair (V , ∂V ) is homotopy equivalent to (V, V \ 0), and by contractibility of the
fibers of V , any vector bundles over V are homotopic to ones pulled up from the
base, i.e. of the form π∗E.

Let V −→ X now be a complex vector bundle. The Thom isomorphism in

K-theory states that V has a K-theory orientation, so that K̃∗(XV ) = K∗(X).

Specifically, K̃∗(XV ) = K∗c (V ) is a freely generated, rank one module over K∗(X),
and in the representation of compactly supported K-theory discussed above, the
generator, or Thom class3 µ ∈ K0

c (V ) has the following nice description.

Proposition. The Thom class µ ∈ K0
c (V ) for a complex vector bundle V −→ X

can be represented as the element

µ = [π∗
∧even

V, π∗
∧odd

V, c`] ∈ K0
c (V ), c`(v)· = v∧ · −v∗y·,

where the isomorphism off 0 is given by σ(v) = c`(v) = v∧ · −v∗y·, the first term
denoting exterior product with v and the second denoting the contraction with v∗

(equivalently, the inner product with v), with respect to any choice of metric.

The isomorphism c`(v) is an example of Clifford multiplication, about which we
will have much more to say in section 5.

Finally, a bit about Fredholm operators. Let H be a separable, infinite dimen-
sional Hilbert space, and recall that a bounded linear operator P is Fredholm if
it is invertible modulo compact operators, which in turn are those operators in
the norm closure of the finite rank operators. Thus P is Fredholm iff there exists
an operator Q such that PQ− Id and QP − Id are compact. One upshot of this is
that

ker(P ) and coker(P ) = ker(P ∗) are finite dimensional.

2Though we shall only need it for vector bundles, by compactly supported cohomology of any
space M can be thought of as the relative cohomology of (M+,∞) where M+ denotes the (one-
point or otherwise) compactification of M . This is consistent if we agree to take M+ = M t {pt}
for compact M .

3We’ll discuss orientation classes more generally in section 3, and we’ll interpret the Thom
class in terms of spinc structures in section 7.
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The relationship between Fredholm operators and K-theory starts with the ob-
servation of Atiyah [Ati67] that the space of Fredholm operators on H classifies
K0:

Proposition (Atiyah).
[X,Fred(H)] = K0(X),

where the left hand side denotes homotopy classes of maps X −→ Fred(H), the
latter given the operator topology.4

Morally, the idea is to take a map P : X −→ Fred(H), and examine the vector
bundles ker(P ) and coker(P ), whose fibers at a point x ∈ X are the finite dimen-
sional vector spaces ker(P (x)) and coker(P (x)), respectively. Of course this is a
bit of a lie, since the ranks of these bundles will generally jump around as x varies;
nevertheless, it is possible to stabilize the situation and see that the class

[ker(P )]− [coker(P )] ∈ K0(X)

is well-defined.

2. Differential operators and families

One of the most important sources of such maps X −→ Fred(H) are families
of differential operators on X. Let’s start with differential operators themselves.
A working definition of the differential operators of order k, Diffk(X;E,F ) :
C∞(X;E) −→ C∞(X;F ), where E and F are vector bundles overX is the following
local definition.

Diffk(X;E,F ) 3 P locally
=

∑
|α|≤k

aα(x)∂αx , aα(x) ∈ Hom(Ex, Fx),

where we’re employing multi-index notation: α = (α1, . . . , αn) ∈ Nn, |α| =
∑
i αi,

∂αx = ∂α1
x1
· · · ∂αn

xn
, where x = (x1, . . . , xn) are local coordinates on X.

This local expression for P does not transform well under changes of coordi-
nates; however, the highest order terms (those with |α| = k) do behave well. If

we consider ∂αx ∈ Sym|α|TxX, we can view it as a monomial map T ∗xX −→ R of
order |α|. If x = (x1, . . . , xn) are coordinates on X inducing coordinates (x, ξ) =
(x1, . . . , xn, ξ1, . . . , ξn) on T ∗X, the monomial obtained is just

∂αx = ξα = ξα1
1 · · · ξαn

n .

Summing up all the terms of order k gives us a homogeneous polynomial of order
k, which because of the aα term is a homogeneous polynomial on T ∗xX valued in
Hom(Ex, Fx). The claim is that this principal symbol

σ(P )(x, ξ) =
∑
|α|=k

aα(x)ξα ∈ C∞(T ∗X; Hom(π∗E, π∗F ))

is well-defined.
An operator is elliptic if its principal symbol is invertible away from the zero

section 0 ∈ T ∗X. The canonical example of an elliptic operator is ∆, the Laplacian
(on functions, say), a second order operator whose principal symbol is σ(∆)(ξ) =

|ξ|2, where ξ ∈ T ∗X and the norm comes from a Riemannian metric. The canonical
non-example on R×X is � = ∂2

t −∆, the D’Alembertian or wave-operator, whose

4The precise topology one should take on Fred(H) becomes a little difficult in twisted K-theory,
but (I guess!) not here.
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principal symbol is σ(�) = τ2 − |σ|2, where (τ, σ) ∈ T ∗R × T ∗X, which vanishes
on the (light) cones {τ = ± |ξ|}.

The reader whose was paying particularly close attention earlier will note that
the symbol of an elliptic differential operator is just the right kind of object to
represent an element in the compactly supported K-theory5 of T ∗X since it is
invertible away from 0 ⊂ T ∗X:

P elliptic =⇒ [π∗E, π∗F, σ(P )] ∈ K0
c (T ∗X).

For our purposes, the other important feature of an elliptic operator P on a
compact manifold is that it extends to a Fredholm operator P : L2(X;E) −→
L2(X;F ). Actually, this is a bit of a lie, since if k > 0, P ∈ Diffk(X;E,F ) is
unbounded on L2(X;E), and we should really consider it acting on its maximal
domain in L2(X;E), which is the Sobolev space Hk(X;E) which itself has a natural
Hilbert space structure. However, since the order of operators is immaterial as far
as index theory is concerned, we will completely ignore this issue for the rest of this
note, pretending all operators in sight are of order zero6, which act boundedly on
L2.

Now let X −→ Z be a fibration of compact manifolds with fibers Xz
∼= Y .

A family of differential operators with respect to X −→ Z, is just a set of
differential operators on (vector bundles over) the fibers Xz, parametrized smoothly
by the base Z. For a formal definition, take the principal Diffeo(Y ) bundle P −→ Z
such that X = P ×Diffeo(Y ) Y ; then the differential operator families of order k are

obtained as7

Diffk(X/Z;E1, E2) = P ×Diffeo(Y ) Diffk(Y ;E1, E2).

As before, there is a principal symbol map

Diffk(X/Z;E1, E2) 3 P 7−→ σ(P ) ∈ C∞(T ∗(X/Z); Hom(π∗E1, π
∗E2)),

where T ∗(X/Z) denotes the vertical (a.k.a. fiber) cotangent bundle. Once again P
is elliptic if σ(P ) is invertible away from the zero section; if this is the case, P
extends to a family of Fredholm operators on the Hilbert space bundles

Hi −→ Z i = 1, 2 with fiber (Hi)z = L2(Xz;Ei).

By Kuiper’s theorem that the unitary group of an infinite dimensional Hilbert space
is contractible, the bundles Hi are trivializable, so trivializing and identifying H1

andH2 (all separable, infinite dimensional Hilbert spaces are isomorphic), we obtain
a map

P : Z −→ Fred(H), H ∼= L2(Y )

which must therefore have an index in the even K-theory of Z:

Diff∗(X/Z;E,F ) 3 P elliptic =⇒ ind(P ) = [ker(P )]− [coker(P )] ∈ K0(Z).

5In fact, any element of K0
c (T ∗X) can be represented as the symbol of an elliptic pseudodif-

ferential operator, though we shall not discuss these here.
6In fact it is always possible to compose P with an invertible pseudodifferential operator (of

order −k) so that the composite has order zero, without altering the index of P . One such choice

is (1 + ∆)−k/2, another is (1 + P ∗P )−1/2.
7I will be sloppy about distinguishing between families vector bundles on the fibers and vector

bundles on the total space X. In fact they are the same.
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Just as in the case of the single operator, the principal symbol of the family P
represents a class in compactly supported K-theory of T ∗(X/Z):

[π∗E, π∗F, σ(P )] ∈ K0
c (T ∗(X/Z)).

We will come back to the relationship between these two objects in a moment; for
now you should think of the index as an assignment which maps [π∗E, π∗F, σ(P )] ∈
K0
c (T ∗(X/Z)) to ind(P ) = [ker(P )]−[coker(P )] ∈ K0(Z). This is well-defined since

any two elliptic operators with the same principal symbol are homotopic through
elliptic (hence Fredholm) operators, and since the index is homotopy invariant, any
two choices of operators P, P ′ with the same symbol σ(P ) = σ(P ′) will have the
same index in K0(Z).

3. Gysin maps

In the first Talbot talk, Jesse Wolfson discussed the Gysin map in K-theory
associated to an embedding. We will need a similar kind of Gysin map associated
to fibrations. Let p : X −→ Z be a smooth fibration with Z compact but not
necessarily having compact fibers. By the theorem of Whitney, we can embed any
manifold into RN for sufficiently large N , and since Z is compact, this can be done
fiberwise to obtain an embedding of fibrations from X into a trivial fibration:

X
� � //

p

��

Z × RN
pr1

{{
Z

Let ν −→ X denote the normal bundle to X with respect to this embedding; by
the collar neighborhood theorem it is isomorphic to an open neighborhood of X in
Z × RN . The open embedding i : ν ↪→ Z × RN induces a wrong way map

ĩ : ΣNZ −→ Xν

by adding points at infinity and considering the quotient map Z×RN/∞ −→ ν/∞.
Thus we obtain a Gysin (a.k.a. “wrong way,” “umkehr,” “pushforward,”
“shriek”) map

ĩ∗ : h̃∗(Xν) −→ h̃∗(ΣNZ) = h∗−N (Z)

in any generalized cohomology theory h∗(·). If the fibration is oriented (in a sense
defined below), we will actually obtain a map from the cohomology of X to that of
Z.

Let V −→ X be a vector bundle. We say that V has an orientation for
the cohomology theory h∗ (which we are assuming is multiplicative) if there

is a global (Thom) class µ ∈ h̃n
(
XV

)
which restricts to the multiplicative unit

µx ∈ h̃n(XV
x ) = h̃n(Sn) = h̃0(pt) (here n is the rank of the vector bundle); if such

a class exists, we have a Thom isomorphism

h∗c(X)
∼=−→ h̃∗+n

(
XV

)
.

Specifically, h̃∗(XV ) is a freely generated module over h∗c(X) with generator µ.
We say a fibration X −→ Z is oriented with respect to the cohomology theory

if T (X/Z) −→ X has an h∗ orientation. Indeed, if this is the case, the orientation
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on T (X/Z) −→ X induces8 one on ν −→ X, and we obtain the Gysin map
associated to an oriented fibration

p! : h∗c(X) −→ h∗−n(Z)

via the composition h∗c(X)
∼=−→ h̃∗+(N−n)(Xν)

ĩ∗−→ h∗−n(Z). Note in particular
that the degree shifts by N cancel; indeed the Gysin map is completely independent
of the choice of embedding X −→ Z × RN .

4. The Gysin map as the index

Now let us return to families of elliptic differential operators. Given P ∈
Diffk(X/Z;E,F ), we have the element [π∗E, π∗F, σ(P )] ∈ K0

c (T ∗(X/Z)), which
maps to the index ind(P ) = [ker(P )] − [coker(P )] ∈ K0(Z). The famous index
theorem of Atiyah and Singer [AS68] [AS71] can now be stated quite simply.

Theorem (Atiyah-Singer). The index map

ind : [π∗E, π∗F, σ(P )] ∈ K0
c (T ∗(X/Z)) −→ [ker(P )]− [coker(P )] ∈ K0(Z)

coincides with the Gysin map K0
c (T ∗(X/Z)) −→ K0(Z) associated to the oriented

fibration9

p : T ∗(X/Z) −→ Z.

In short,

ind = p! : K0
c (T ∗(X/Z)) −→ K0(Z).

In particular, we can recover the integer index ind(P ) = dim ker(P )−dim coker(P ) ∈
Z of a single operator on a compact manifold X from the case Z = pt; from the
unique map X −→ pt, we get an oriented fibration T ∗X −→ pt and a Gysin map
p! : K0

c (T ∗X) −→ K0(pt) = Z.
Let us unpack this a bit. We have the fibration T ∗(X/Z) −→ Z which factors

as T ∗(X/Z) −→ X −→ Z. As noted above there is always an embedding of
X into a trivial Euclidean bundle Z × RN −→ Z. This induces an embedding
T ∗(X/Z) ↪→ Z × T ∗RN = Z × R2N , so we have the following situation

T ∗(X/Z)

��

� � // Z × R2N

��
X

��

� � // Z × RN

xx
Z

The point is that, because the embedding T ∗(X/Z) ↪→ Z × R2N comes from an
embedding of X, the normal bundle ν −→ T ∗(X/Z) carries a canonical complex
structure. Indeed, if we denote by NX −→ X the normal bundle of X with respect
to X ↪→ Z × RN , then ν is isomorphic to two copies of NX:

ν ∼= NX ⊕NX ∼= NX ⊗ C,

8It is a theorem that if α and β are vector bundles over X, than orientability of any two of

α, β, α⊕ β implies orientability of the third.
9We’ll see below why this fibration is canonically oriented.
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one copy representing the normal to the base X, and the other copy representing
the normal to the fiber T ∗(X/Z)x, x ∈ X. Thus we conclude that, whether or not
the fibration X −→ Z has a K-theory orientation, T ∗(X/Z) −→ Z always has a
K-theory orientation, so we have a Gysin map

p! : K0
c (T ∗(X/Z)) −→ K0(Z),

which coincides with the index map on elements in K0
c (T ∗(X/Z)) which represent

symbols of elliptic differential operators10. Note that there is no degree shift since
T ∗(X/Z) has even dimensional fibers over Z and K-theory is 2-periodic.

In the next sections we shall discuss the conditions necessary for X −→ Z to have
a K-theory orientation, and how to realize the Gysin map K0(X) −→ K0(Z) in
terms of elliptic differential operators and their indices; this will involve a digression
through Clifford algebras, spin groups, spin structures and Dirac operators. Later
we will see how to deal with objects in odd K-theory.

5. Clifford algebras

Let (V, q) be a finite dimensional vector space over R with q a non-degenerate
quadratic form. The (real) Clifford algebra C`(V, q) is the universal object with
respect to maps f : V −→ A, where A is an associative algebra with unit, satisfying
f(v) · f(v) = −q(v)1. It can be constructed as a quotient of the tensor algebra:

C`(V, q) =

∞⊕
n=0

V ⊗n/I, I = 〈v ⊗ v + q(v)1〉

where I is the ideal generated by all elements of the form v ⊗ v + q(v)1.
As a vector space (but not as an algebra unless q ≡ 0!) C`(V, q) is isomorphic

to the exterior algebra
⊕dim

n=0(V )
∧n

V ; in particular if {ei} is a basis of V , then
{ei1 · · · eik ; i1 < · · · < ik} form a basis for C`(V, q), which under multiplication are
subject to the relation

eiej = −ejei − 2q(ei, ej)

where we denote also by q the bilinear form associated to q. Computations are
easiest when {ei} is an orthonormal basis, whence the multiplication simplifies to
the rules eiej = −ejei, i 6= j and e2

i = −1.
In fact C`(V, q) is a Z2-graded algebra. Indeed, if we let C`0(V, q) and C`1(V, q)

be the images of
∧even

V and
∧odd

V , respectively, under the vector space isomor-
phism with the exterior algebra, it is easy to check that

C`(V, q) = C`0(V, q)⊕ C`1(V, q) and C`i(V, q) · C`j(V, q) ⊂ C`(i+j) mod 2(V, q).

Alternatively, the involution α : V −→ V : v 7−→ −v extends multiplicatively to an
involution on all of C`(V, q):

α : C`(V, q) −→ C`(V, q), α2 = Id, α : V 3 v 7−→ −v ∈ V

and we can define C`0(V, q) and C`1(V, q) as the positive and negative eigenspaces
of α, respectively. Note in particular that V ⊂ C`1(V, q) as a vector subspace.

10As remarked in previous footnotes, it is desirable to broaden one’s focus to include pseudo-

differential operators, for then every element of K0
c (T ∗(X/Z)) can be represented as the symbol

of an elliptic pseudodifferential operator which extends to a Fredholm operator, so the index map
extends to all of K0

c (T ∗(X/Z)) and is equal to the Gysin map.
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We can also form the complex Clifford algebra C`(V, q) by tensoring up with
C:

C`(V, q) := C`(V ⊗ C, qC) ∼= C`(V, q)⊗ C.
Complex Clifford algebras are those of primary importance for this talk, since it
concerns (mostly) complex K-theory. There is a parallel relationship between real
Clifford algebras and real K-theory.

We will denote the Clifford algebra of Euclidean n-space by

C`n := C`(Rn, 〈·, ·〉)

and call it the (real) Clifford algebra of dimension n. Similarly, we will denote
the complex Clifford algebra of dimension n by

C`n := C`(Rn, 〈·, ·〉) = C`(Cn, 〈·, ·〉).

It is a rather nice fact that complex Clifford algebras are isomorphic to matrix
algebras11.

Proposition.

C`2n ∼= M(2n,C) and C`2n+1
∼= M(2n,C)⊕M(2n,C)

where M(k,C) denotes the algebra of k × k complex matrices.

As a consequence of this, the representations of C`n are easy to classify: C`2n has
a unique irreducible representation of (complex) dimension 2n given by the obvious
action of M(2n,C) on C2n

; and C`2n+1 has two distinct irreps of dimension 2n

corresponding to action of one or the other of the factors of M(2n,C).
The last tidbit we shall need is the algebra isomorphism

C`n−1
∼= C`0n

(note that C`0n is a subalgebra of C`n). This is obtained by considering the map
f : Rn−1 −→ C`0n given on basis vectors by

Rn−1 3 ei 7−→ f(ei) = ei en ∈ C`0n.

This satisfies f(v) · f(v) = v en v en = −q(v)1 and thus generates an algebra map
C`n−1 −→ C`0n by the universal property, which is easily seen to be bijective.

This isomorphism leads to an equivalence between graded C`n modules and
ungraded C`n−1 modules. In the one direction, if M = M0 ⊕ M1 is a graded
module over C`n, then M0 and M1 are (possibly inequivalent!) modules over
C`n−1

∼= C`0n. In the other direction, given a C`n−1-module M , the we can form
M ⊗C`0n C`n, which is a graded module over C`n.

Putting this fact together with the classification of irreps above, we see that, for
even Clifford algebras, there is a unique irreducible C`2n module

S2n = S+
2n ⊕ S−2n

which splits as the two inequivalent irreps of C`02n ∼= C`2n−1. Hence it has two
inequivalent gradings, either S0 ⊕ S1 = S+ ⊕ S− or S0 ⊕ S1 = S− ⊕ S+. On the
other hand, for odd Clifford algebras, there is a unique graded C`2n+1 module

S2n+1 = S+
2n+1 ⊕ S−2n+1

11In fact real Clifford algebras are also isomorphic to matrix algebras over R, C or H, or a
direct sum of two such, with an 8-periodic pattern related to Bott periodicity in the real setting.
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since both S+
2n+1 and S−2n+1 must be equivalent to the unique irrep of C`02n+1

∼=
C`2n.

6. Spin and Spinc groups

Given (V, q), the group Spin(V, q) is the universal cover of the special orthogonal
group SO(V, q). We can find it inside the Clifford algebra of V as follows. Let
C`(V, q)× be the group of units inside C`(V, q). This group acts on C`(V, q) by a
twisted conjugation:

C`(V, q)× × C`(V, q) 3 (x, v) 7−→ x v α(x)−1

where α|C`i(V,q) = (−1)iId is the involution from earlier. The Clifford group

Γ ⊂ C`(V, q)× is the subgroup which fixes the subspace V ⊂ C`(V, q); it also
preserves the quadratic form q and hence maps to the orthogonal group O(V, q)
with kernel R×:

1 −→ R× −→ Γ −→ O(V, q) −→ 1.

Up to a scalar factor, there is a natural choice of multiplicative norm |·| : Γ −→ R×,
and the Spin group of (V, q), Spin(V, q), is defined to be the subgroup of norm 1
elements covering12 the special orthogonal group SO(V, q):

Spin(V, q) := {u ∈ Γ ; |u| = 1, u maps to SO(V, q)} ⊂ Γ.

Alternatively, it can be defined as the subgroup of C`(V, q)× generated by finite
products of the form v1 · · · v2n, vi ∈ V , q(vi) = 1 with an even number of factors.
We have the exact sequence

1 −→ {±1} −→ Spin(V, q) −→ SO(V, q) −→ 1

and Spin(V, q) is compact if q has positive signature. It also lies in the 0-graded
component of C`(V, q):

Spin(V, q) ⊂ C`0(V, q)

The spin group of (Rn, 〈·, ·〉) will simply be called the spin group of dimension
n, and denoted

Spinn := Spin(Rn, 〈·, ·〉).
From now on, we focus on the even dimensional case. Since Spin2n ⊂ C`2n, we

have a complex representation coming from the irreducible C`2n = C`2n⊗C module
S2n. In fact, since Spin2n ⊂ C`02n, this splits as two inequivalent, irreducible half
spin representations

S2n = S+
2n ⊕ S−2n.

We denote these fundamental representations by

ρ±1/2 : Spin2n −→ GL(S±2n).

The representation

ρ := ρ+
1/2 ⊕ ρ

−
1/2 : Spin2n −→ GL(S2n) = GL(S+

2n ⊕ S−2n)

is called the fundamental spin representation and vectors in S2n are called
spinors. We’ll see the importance of spinors in defining K-theory orientation classes
in section 7.

12The subgroup of norm 1 elements covering O(V, q) is called Pin(V, q), a joke which is appar-
ently due to Serre.
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As we are primarily interested in complex representations, there is another group
inside C`n to discuss. The Spinc group associated to (V, q) is the quotient

Spinc(V, q) = Spin(V, q)×Z2
U1

where the Z2 is generated by the element (−1,−1) ∈ Spin(V, q)×U1. We have the
exact sequence

1 −→ {±1} −→ Spinc(V, q) −→ SO(V, q)×U1 −→ 1

As with the spin group, Spinc(V, q) sits inside C`(V, q),

Spinc(V, q) ⊂ C`0(V, q) ⊂ C`(V, q) = C`(V, q)⊗ C

and, for the canonical spinc groups of even dimension, Spinc2n := Spinc(R2n, 〈·, ·〉),
we have a fundamental spinc representation

ρ := ρ+
1/2 ⊕ ρ

−
1/2 : Spinc2n −→ GL(S2n) = GL(S+

2n ⊕ S−2n)

on the spinors S2n, where again, S2n is the unique irreducible C`2n module.

7. Spin(c) structures

Let us now transfer this to a manifold setting. We’ll define spin and spinc

structures on a manifold and see that they produce K-theory orientations on the
tangent bundle. Given a Riemannian manifold (X, g), we can form the (complex)
Clifford bundle13

C`(X) −→ X, C`(X)x := C`(TxX, gx), for all x ∈ X,

which is a bundle of complex Clifford algebras of dimension n = dim(X). A complex
vector bundle E −→ X is called a Clifford module if it carries a fiberwise action

c` : C`(X) −→ End(E).

Such an action, if it exists, will be called Clifford multiplication.
Of course, over each x ∈ X, any Clifford module decomposes as a direct sum

of irreducible modules over C`(X)x, but this is not necessarily true globally. This
leads us to the notion of spin and spinc structures on X.

Let PSO(X) −→ X be the frame bundle of X, i.e. the principal SOn bundle to
which TX is associated:

TX = PSO(X)×SOn Rn.
X is called a spin manifold if there exists a principal Spinn bundle PSpin(X) and
a bundle map

Spinn //

��

SOn

��
PSpin(X) //

&&

PSO(X)

��
X

13Of course we also have the real Clifford bundle C`(X) −→ X, but we shall not need it for

our applications. More generally, we can define Clifford bundles C`(V ) −→ X and C`(V ) −→ X
whenever V −→ X is a vector bundle with inner product.
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which is a 2-sheeted cover of PSO(X). PSpin(X) is called a spin structure on X.14

The obstruction to obtaining such a cover of PSO(X) is the second Stiefel-Whitney
class15 of X:

X is spin iff w2(X) ≡ 0,

and if X is spin, the possible spin structures of X are parametrized by H1(X,Z2).
A spinc structure on X consists of a complex line bundle L −→ X and a lift

Spincn //

��

SOn ×U1

��
PSpinc(X,L) //

))

PSO(X)× PU1
(L)

��
X

which is a 2-sheeted covering of PSO(X) × PU1
(L), where PU1

(L) is the structure
bundle of L. X is called a spinc manifold if such a lift exists. The obstruction to
obtaining PSpinc(X,L) is the class w2(X) + c1(L)(mod 2); thus

X is spinc iff w2(X) = α(mod 2) for some α ∈ H2(X,Z)

Being spinc is a weaker condition than being spin:

Proposition. If X is spin, then it has a canonical spinc structure associated to
the trivial line bundle, so

X spin =⇒ X spinc.

Additionally, any (almost) complex manifold has a canonical spinc structure.

Proposition. If X is an almost complex manifold, then w2(X) = c1(X)(mod 2),
and X has a canonical spinc structure associated to the determinant line bundle∧n

CTX (which satisfies c1 (
∧n

TX) = c1(X)).

Note that if X is both spin and almost complex, the spinc structure coming from
the spin structure is generally not the same as the one coming from the almost
complex structure.

The importance of spinc structures is the following proposition, which says that,
given a spinc structure, Clifford modules are globally reducible, and in bijection
with the set of C`n modules.

Proposition. If X is spinc, then every Clifford module E −→ X has the form

E = PSpinc(X,L)×σ F,
where σ : Spincn −→ GL(F ) is a representation of Spincn which extends to a repre-
sentation of C`n (here n = dim(X)).

14Similarly, a general vector bundle with inner product V −→ X admits a spin structure

whenever PSO(V ) admits a 2-sheeted cover PSpin(V ).
15This is straightforward to see by trying to patch PSpin(X) together over a trivializing cover.

In order to do so, we must have a Cech “cohomology class” (I’m using quotes since the coefficients

are in a nonabelian group; nevertheless H1(X; SOn) is a based set) in H1(X; SOn) which is the
image of a class in H1(X; Spinn). Using the long exact sequence associated to

1 −→ Z2 −→ Spinn −→ SOn −→ 1,

the image of this class in H2(X;Z2) is exactly w2(X) ∈ H2(X;Z2).
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Turning the construction around, we obtain Clifford modules over a spinc mani-
fold X for every representation of C`n; in particular for dim(X) = 2n, we have the
complex spinor bundle

S(X) = S+(X)⊕ S−(X) = PSpinc(X,L)×ρ+
1/2
⊕ρ−

1/2
S+ ⊕ S−

with the (graded) action

c` : C`(X) −→ Endgr(S+(X)⊕ S−(X)).

Finally, we can get to the main point about spinc structures, which is that they
allow us to construct K-theory orientation classes16 for T ∗X −→ X.

Proposition. If an even dimensional manifold X has a spinc structure and S(X) =
S+(X)⊕ S−(X) is the bundle of spinors, then

µ = [π∗S+(X), π∗S−(X), c`] ∈ K0
c (T ∗X)

is an orientation/Thom class for complex K-theory, so K∗c (T ∗X) is freely generated
by µ as a module over K∗(X), and

K∗c (T ∗X) ∼= K∗(X).

Note that T ∗X ⊂ C`1(X), so c`(ξ) : S±(X)x −→ S∓(X)x for (x, ξ) ∈ T ∗X;

moreover, this multiplication is invertible with inverse |ξ|−2
c`(ξ) provided ξ 6= 0.

As a side remark, let me point out that an analogous theorem is true for spin
structures and real K-theory: IfX is spin and 8n dimensional, then [π∗S+(X), π∗S−(X), c`] ∈
KO0

c (T
∗X) is an orientation class, and KO∗(X) ∼= KO∗c (T ∗X).

Note that if X is almost complex, with the corresponding spinc structure, then
we can identify S(X) with

∧∗
CT
∗X; in this case,

S±(X) ∼=
∧even/odd

C T ∗X

and c`(ξ) = ξ∧ ·−ξ∗y· under this identification. Thus we recover the Thom element

µ = [π∗
∧even

V, π∗
∧odd

V, c`] ∈ K0
c (V )

for complex bundles, and we see that the Thom isomorphism for such bundles can
be thought of as a special case of the isomorphism for spinc bundles.

Finally, let us briefly discuss what this looks like in the setting of a fibration
X −→ Z. In this case the relevant Clifford bundle is

C`(X/Z) = C`(T (X/Z), g) −→ X,

and the fibration is oriented as long as T (X/Z) −→ X admits a spinc structure.
Indeed, if it does, we have the orientation class

µ = [π∗S+(X/Z), π∗S−(X/Z), c`] ∈ K0
c (T ∗(X/Z))

constructed from the bundles of spinors S±(X/Z) −→ X.

16In fact the proposition is valid for general vector bundles V −→ X with spinc structure; the
analogous element µ = [π∗S+(V ), π∗S−(V ), c`] ∈ K0

c (V ) is a Thom class.
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8. Dirac operators

In this section we’ll see that the orientation classes discussed above are in fact
the symbols of particularly nice (families of) elliptic differential operators. Let
E −→ X be any Clifford module over X. Suppose E is endowed with a connection
∇ : C∞(X;E) −→ C∞(X;T ∗X ⊗ E) such that

∇(c`(ξ)s) = c`(∇LCξ)s+ c`(ξ)∇s
where ∇LC is the Levi-Civita connection, which extends canonically to C`(X) −→
X. Such a connection (which always exists) is called a Clifford connection on E.

Given such data, we can construct a canonical first order, elliptic, differential
operator D ∈ Diff1(X;E) called a Dirac operator; at a point x ∈ X, D is defined
by

Dp =
∑
i

c`(ei)∇ei , for an orthonormal basis {ei} of TxX.

Proposition. Such a Dirac operator is an elliptic, essentially self adjoint (on
L2(X;E)) operator with principal symbol

σ(D)(ξ) = ic`(ξ).

If E = E+ ⊕ E− is a graded C`(X) module, then D has the form

D =

(
0 D−

D+ 0

)
with D+ and D− mutual adjoints.

Note that σ(D2) = σ(D)2 = |ξ|2 Id, so D2 is a Laplacian operator on E.
If X is a spinc manifold, we can form a canonical spinc Dirac operator

/D =

(
0 /D−

/D+ 0

)
∈ Diff1(X;S+(X)⊕ S−(X))

acting on the spinors S(X), and it follows that

[π∗S+(X), π∗S−(X), σ(/D+)] ∈ K0
c (T ∗X)

is an orientation class for K-theory. This realizes the Thom isomorphism as follows.
We can always twist /D by a vector bundle E −→ X by trivially extending the
Clifford action to the bundle S(X) ⊗ E and taking a product connection to get
/DE ∈ Diff1(X;S(X)⊗ E). Then for an element

[E]− [F ] ∈ K0(X),

the image under the Thom isomorphism K0(X) −→ K0
c (T ∗X) is the element17

[π∗S+(X)⊗E, π∗S−(X)⊗E, σ(/DE)]−[π∗S+(X)⊗F, π∗S−(X)⊗F, σ(/DF )] ∈ K0
c (T ∗X).

For a complex manifold X, you have probably already met the canonical spinc

Dirac operator. Indeed, using the identifications S(X) ∼=
∧∗

CT
∗X ∼=

∧0,∗
T ∗X, one

can easily see that

/D+ = ∂ + ∂
∗ ∈ Diff1(X;

∧0,even
T ∗X,

∧0,odd
T ∗X)

17The better way to write this is to use Z2 gradings everywhere. Let E = E ⊕ F consid-
ered as a graded vector bundle and form S(X)⊗̂E, where ⊗̂ denotes the graded tensor prod-
uct. Then /D extends to a graded, twisted operator /DE, and the orientation class is given by

[π∗(S(X)⊗̂E)+, π∗(S(X)⊗̂E)−, σ(/D+
E )] ∈ K0

c (T ∗X). We’ll talk more about gradings in section 9.
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is just the Dolbeault operator acting from even to odd harmonic forms.
Finally, in the case of an oriented fibration X −→ Z, we construct in precisely

the same way the canonical family of spinc Dirac operators

/D ∈ Diff1(X/Z;S+(X/Z)⊕ S−(X/Z))

and of course

[π∗S+(X/Z), π∗S−(X/Z), σ(/D)] ∈ K0
c (T ∗(X/Z))

is the Thom class.
This gives the analytical realization of the Gysin map K0(X) −→ K0(Z);

namely, it coincides with the analytical index of the family of spinc Dirac oper-
ators, twisted by the given element in K0(X):

K0(X) 3 [E]− [F ] 7−→ ind(/DE − /DF ) ∈ K0(Z).

9. Higher Index

We will develop two pictures of the higher K-groups of a manifold X, in analogy
to the two we’ve developed for K0(X), namely, the Grothendieck group of vector
bundles, and the classifying space consisting of Fredholm operators. Really this
whole story is a bit more interesting in the case of real K-theory, and much of what
we describe below will be valid if one replaces K∗(X) by KO∗(X) and C`∗ by C`∗
(with the obvious exception of 2 periodicity of C` modules, which would be replaced
by an analogous 8-fold periodicity of C` modules).

Fix k for a moment, and consider the semigroup of C`k modules. Of course
this can be completed to a group by the usual Grothendieck construction, and we
denote the Grothendieck group of C`k modules by Mk. Now, the inclusion
i : Rk ↪→ Rk+1 induces an injective algebra homomorphism i : C`k ↪→ C`k+1, which
gives a restriction operation

i∗ :Mk+1 −→Mk

on Clifford modules. It turns out that the interesting object to consider isMk/i
∗Mk+1.

Actually, it is more convenient at this point to work in terms of graded modules.

Thus, let M̂k denote the Grothendieck group of graded C`k modules. Again
we have a restriction

i∗ : M̂k+1 −→ M̂k,

and from the equivalence between graded C`k modules and ungraded C`k−1 mod-
ules, we have

M̂k/i
∗M̂k+1

∼=Mk−1/i
∗Mk.

Furthermore, it is easy to check using the representation theory of complex Clif-
ford algebras, that we have the following periodicity (related of course to Bott
periodicity)

M̂k/i
∗M̂k+1

∼=Mk−1/i
∗Mk =

{
Z if k is even

0 if k is odd.

Let W = W 0 ⊕W 1 ∈Mk, and form the trivial bundles Ei = Dk ×W i over the
unit disk Dk ⊂ Rk. We can form the element{

E0, E1, c`(·)
}
∈ K0(Dk, Sk)

where c`(·) : Sk ⊂ Rk \ {0} ⊂ C`k −→ Iso(W 0,W 1). This bundle isomorphism
over Sk can be shown to extend over Dk if and only if W actually comes from a
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C`k+1 module. Thus one obtains the celebrated result of Atiyah, Bott and Shapiro
[ABS64].

Theorem (Atiyah-Bott-Shapiro). The above construction gives a graded ring iso-
morphism

M̂∗/i∗M̂∗+1
∼= K0(D∗, S∗) = K−∗(pt).

[ABS64] contains an analogous result for real K-theory and C` modules. While
the above looks like an appealing way to prove Bott periodicity from the more
obvious periodicity of Clifford modules, it is not actually so. Indeed, the ABS
result uses periodicity of K-theory in the proof.

This leads to the analogue of the vector bundle representation ofK0(X). Namely,
elements of Kk(X) can be represented18 as (isomorphism classes of) bundles of
graded C`k modules, modulo those which admit a graded C`k+1 action:

Kk(X) =
{
V 0 ⊕ V 1 −→ X ; C`k −→ Endgr(V

0 ⊕ V 1)
}
/
{
C`k+1 −→ Endgr(V

0 ⊕ V 1)
}

It is an instructive exercise to recover the vector bundle representation of K0(X)
from this definition. Indeed, since C`0 = C with the trivial grading and C`1 = C⊕C,
we see that graded C`0 modules are just vector bundles of the form E ⊕ F , which
extend to C`1 modules only if E ∼= F (since the action of the generator of the

1-graded part of C`1 must be an isomorphism: 0⊕ 1 : E ⊕F
∼=−→ F ⊕E). Thus we

have the equation E ⊕ E = 0 ∈ K0(X) or equivalently −E ⊕ 0 = 0 ⊕ E, and we
see that we can identify [E]− [F ] in the old representation with E ⊕ F in this new
representation.

Next we can generalize the Fredholm operator representation ofK0(X), following
Atiyah and Singer’s paper [AS69]. Let H = H0⊕H1 be a graded, separable, infinite
dimensional Hilbert space, and assume H is a module over C`k (for a given k, but
then the action can be extended for all k). Let

Fredk(H) =
{
P ∈ Hom(Hi;Hi+1) ; P Fredholm and commutes with C`k

}
be the space of graded (i.e. acting as 1-graded elements) Fredholm operators19

commuting (in the graded sense) with C`k. We will call these the C`k-linear
Fredholm operators. These form a classifying space for K−k(∗):

Theorem (Atiyah-Singer). There is an explicit homotopy equivalence

Fredk(H) ' ΩFredk−1(H)

for all k, and therefore
[X,Fredk(H)] = K−k(X)

Again, for P ∈ [X,Fredk(H)] one can morally take [kerP ] ∈ K−k(X), since
at each point kerP is a graded C`k module. A stabilization procedure would be
required to make this precise, and I have to admit I’ve never seen it written down,
though I’m sure it’s possible.

18I’m not sure of a good reference for this explicit representation of higher K-theory. It is

implicit in Karoubi’s formulation, but he takes the algebraic approach, with projective C0(X)
modules instead of vector bundles.

19Actually this is a bit of an oversimplification. When k is odd, Fredk(H) can be separated into

open components Fred+
k , Fred−

k and Fred∗
k consisting of operators which are essentially positive

(meaning positive off of a finite dimensional subspace), essentially negative, or neither. The first
two are contractible, and we take Fred∗

k(H) in this case.
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Finally, one can make the Atiyah-Singer index construction go through in this
case (again, I’ve not seen this written explicitly, but reliable sources assure me it’s
true!). Namely, given a fibration X −→ Z, if one has a C`k linear family of
elliptic differential operators

P ∈ Diff l(X/Z;E0 ⊕ E1),

meaning that P =

(
0 P1

P0 0

)
is graded and commutes in the graded sense with an

action C`k −→ Endgr(E
0 ⊕ E1), then

ind(P ) = [kerP0 ⊕ kerP1] ∈ Kk(Z)

and that this index coincides with the Gysin map

ind = p! : Kk
c (T ∗X/Z) −→ Kk(Z).

Of course, since K1(pt) = 0, operators on a manifold X never have any interest-
ing odd index (however a family of operators might, provided K1(Z) 6= 0). For real
K-theory, however, this can be an interesting and useful concept. For instance, the
Kervaire semicharacteristic on a (4k+1) manifold X can be computed (see [LM89])
as the odd index in KO1(pt) = Z2 of a C`1 linear elliptic differential operator on
X!20
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