Math 350 Problem Set 8 Solutions

Part I

1. Find the values of a > 0 such that the following integrals exist. Justify your answers

(a) (6pts) Dy = {(z,y) | 2® +y*> <1}

1
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Solution. By Fubini’s Theorem, since f(z,y) = (z? +y2)~% > 0, I, will exist if it has a finite
value as an iterated, improper integral. Furthermore, we can use a change of variables, since this
does not change the property that f > 0. So we look at the improper, iterated integral
r=1
2 el 2mp—2a+2 ifa#1,
/ / —-rdrdf = =10
0 o’ 2rlnr if a =1.
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This is finite provided a < 1, so for a < 1, I, exists.
That it does not exist for a > 1 follows by integrating f(z, y) over the annulus Dy . = {(z,y) | € < 2% + y*> < 1},
and taking € — 0:
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both of which diverge as € — 0.
(b) (6pts) D ={(z,y) [0<z<1,0<y<1,y<uz}

Solution. As with the previous problem, since f > 0, it suffices to check integrability as an iterated
integral, using Fubini’s theorem. For a # 1, a # 2, we have
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The limit as €, § and o go to 0 will exist provided a < 1. (Note that this implies a < 2 we don’t have
to worry about the § — o term.)

For a = 1, we have
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which will certainly not be finite as € — 0.

1 r—e 1 1
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which will also fail to be finite as € — 0.

For a = 2, we have

We conclude that the integral exists for all a < 1.



2. (6pts) Show that if C is a curve defined in polar coordinates by r = r(6),6y < 6 < 8, then the path
integral of f(z,y) over C is given by

61 dr2
/fds: f(rcosf,rsinf)\/r?2 + — db.
c 0o do

(Hint: how is this curve parametrized? Don’t let yourself get confused just because the parametrizing
variable is a different one than you’re used to!)

Solution. We use ¢ : 8 — (r(0)cos,r(0)sinf), 6y < 6 < 0, as the parametrization of C. Using the
arclength formula

ds = ||c'(6)]] df = \/(7”(9) cos + r(6) sin ) + (r'(6) sin 6 + r(8) cos 0)* df

= \/r’(0)2 (cos? 6 + sin® §) + r(6)2 (cos? @ + sin® §) £ r'(8)r(6) cos §sin f df

yeilds the result.

3. (6pts) Consider the spherical surface p = a where a € R is constant. Show that, in terms of variables

(6,0),
dS = a?sin ¢ do df

on this surface.

Solution. We use (¢,0) — (asin ¢ cosf,asin ¢siné, acos @) as our parametrization. We have

Ty = acos$cosbi+ acos¢sindj — asin gk

and
Ty = —asin ¢ sin i + a sin ¢ cos 6j.
So
i j k
Ty x Tg=det | acos¢pcosf acosgsing —asing
—asin¢sinf asin¢cosé 0

=a? (sin2 ¢ cos Bi + sin® ¢ sin Bj + (cos ¢ sin ¢ cos? § 4 cos ¢ sin ¢ sin’ O)k) .

Taking the length of this vector, we obtain

dS = a* \/cos2 §sin* ¢ + sin® fsin* ¢ + cos? ¢ sin® ¢ dp df = a? \/sin4 ¢ + cos? ¢sin® ¢ dp df = a® sin ¢ d¢ db.

4. (6pts) Consider the surface ¢ = a where a € [0, 7] is constant. What does this surface look like? Show
that, in terms of variables (p, 6),
dS = psinadpdb

(Note that there is only a single power of p!).

Solution. We use (p,0) — (psinacosf, psinasiné, pcos «) as our parametrization. We have
T, = sin a cos 8i + sin arsin 6 + cos ak

and
Ty = —psinasin fi + psin a cos 6j.



So

i J k -|
T, x Ty =det |V cos o cos 6 cosasinf —sina
L—psinasin@ psinacosf 0 J

=p (sin2 a cos 0 + sin? asin fj + (cos asin a cos?  + cos a sin a sin? 9)k) .

Taking the length of this vector, we obtain

ds = p\/cos2 6 sin* o + sin” f sin* o + cos? asin® adp df = p\/sin4 a + cos? asin® adpdf = psinadpdb.

5. (10pts) On a surface defined by z = g(z,y), our formula for the oriented surface area element is
ndS =dS = (—g,i— g,j + k) dz dy,
where g, = g—g(a:, y) and g, = Z—Z(x, y). Use this to show that if the same surface is also defined by the
equation f(z,y,z) = ¢ for some constant ¢, then

v
I

Solution. Parametrize the surface using (z,y) — (z,y,9(z,y)), and let h(z,y) be f(z,y,z) restricted
to the surface, so

ndS =dS =

dz dy.

h(z,y) = f(z,y,9(z,y))

Since, by definition, f = ¢ is a constant function on the surface, we must have

Vi(z,y) = (fo(z,y,9(x,y)) + f.(2,9,9(2,¥))9: (7, 9)) i+(fy(z,y,9(2,v)) + f.(z,y,9(z,y))gy(z,9)) i = O

So in particular,
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on the surface. Then
dS = (~gui — g,j + k) dody = (fc . %j ; ;k> ddy = Zf drdy

Part 11

1. Let F(z,y,2) = yi+ xj+ 22k, and C be the oriented curve defined by (cost,sint,t) for 0 < t < 2. Let

I= /F ds.
¢
(a) (3pts) Evaluate I directly.
Solution. We have F(z(t),y(t), 2(t)) = sinti+ costj + 2tk, and ds = (—sinti + costj + k) dt so

2w 2
I:/F-ds:/ —sin2t+coszt—|—2tdt:/ cos 2t + 2t dt = 4.
c 0 0

(b) (3pts) F(z,y,2) is in fact a conservative vector field. Evaluate I by finding a potential function
f such that F = V f and use the fundamental theorem of calculus for line integrals.



Solution. We need

fol@,y,2) =y = flz,y,2) =2y +9(y,2).
Then we have

fy@y,2) =a+gy(y.2) =2 = gy(y,2) =0 = g(y,2) = g(2).
Finally,
fo(zy,2) =g.(2) =22 = g(z) =2 +c
so we can take
flz,y,2) = zy + 2>
Then
I:/F- ds=/Vf-ds=f(1,0,27r) — £(1,0,0) = 4x°.
c c

2. (6pts) Compute the path integral

($+y) S C = 3/2
/c(y-l-z)d’ (t) = (t,2/3t77,t), 1 <t <2

Solution. In terms of our parametrization, we have
ds = ||c'(t)]| dt = V2 + tdt,

and
(x+y) (t+2/3t3/?)

(y+2) (2/3t3/2 + 1)

So

(z+y) s — ? _2 /2|72 _
/c(y+z)d _/1 VET R = S(2+1) _

3. (6pts) Compute the line integral

1

LV
= 3
/mdy—yda:, c(t) = (cost,sint), 0 <t < m/2

(You may want to write it in the form F - ds first if that helps you.)

Solution. In terms of our parametrization,

xdy —ydx = cost(costdt) —sint(—sintdt) = 1dt,

/2
/a:dy—ydx:/ 1dt =7/2.
c 0

4. Find the surface area of the following surfaces:

SO

(a) (4pts) z =4 — a2 —y2, 2 > 0.
Solution. Using
dS = /g3 + g2 + ldxdy = /42> + 4y* + 1dz dy,
// dS=// V1+4(2? +y?)dady
s R

where R = {(z,y) | #* + y* < 4}. Thus,

27 2 .
// dS:/ / \/1+4r2rdrd9:27r% (1—}—47"2)3/2
S 0 0

we have

=5 (7 -1),




(b) (4pts) The sphere of radius a (Hint: you may want to use the result from problem 3 in Part I)
Solution. Using the surface area formula from problem 3, we have

27 ™
// dS:/ / a’sin ¢ do df = 4ma’.
Sa o Jo

(c) (4pts) The cone z = \/2? + y2, z < 1. (Hint: problem 4 in Part I gives one possibility)
Solution. This is the cone z = r, which can be parametrized using spherical coordindates p and
0 with ¢ = w/4 fixed. i Using the formula from problem 4, we have

27 1
// dS:/ / psinw/4dpd0:27r£:\/§7r.
s o Jo 2

(Plus an additional 7 if you include the top circular “cap” on the cone. Either way is fine.)
5. (4pts) Compute the flux of the vector field F = zi + yj + zk across the oriented surface consisting of
the upper unit hemisphere, with upward pointing normal.

Solution. Using
dS = a® sin ¢ d¢ df = sin ¢ dep d

and 1
ﬁ:a(;vi+yj+zk):a:i+yj+zk,

2 pw/2
//F-ﬁdS://m2+y2+z2dS:/ / sinpdo df = 2x.
s s o Jo

we have



