Math 350 Problem Set 5 Solutions

Part I

1. (10pts) Show that
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Why doesn’t this violate either version of Fubini’s theorem (Theorem 3 or 3°)7
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You may use the fact that

Proof. The identity above is obtained as follows (you did not need to show this):
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using integration by parts, where
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Interchanging s and ¢, we see that
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This does not violate either version of Fubini’s theorem since the integrand is neither continuous nor
bounded near (0, 0). O

Thus,

whereas



2. (10pts) Let A C R2. Suppose f(z,y) is continuous and non-negative: f(z,y) > 0. Prove that if
[, f(z,y)dA =0, then f(z,y) =0 for all (z,y) € A.

Proof. Assume f(zo,y0) = ¢ > 0. We will show that [[, fdA # 0 (which is the contrapositive of the
statement we’re trying to prove, hence equivalent). By continuity of f, there exists a § > 0 such that

(2, 9) = (o, yo)l| < & => |£(w,9) — F@wo,00)| < = = flz,y) >

c
2 2

Since

& — ol < 6/V2 and |y —yol <8/V2 = |[|(z,9) — (0, 90)l| <9,

: : _ (2 25 _
the disk ||(z,y) — (z0,¥0)|| < § contains a rectangle R of area 26% = (ﬁ) (ﬁ) Let B=A\R be
the region obtained by deleting R from A. By additivity and monotonicity (f > 0 and f > § on R),

//AfdA://deA+//RfdA20+(25)%>0_

and therefore [[, fdA #0.

Assuming we know additivity for more general regions, we could alternatively just let R be the disk

3. (10pts) Let R =1[0,1] x [0,1] and let f : R — R be the function

1 if z and y are rational numbers,
flz,y) = .
0 otherwise.

Show that f is not integrable, by showing that the sequence of Riemann sums does not tend to a unique
limit which is independent of the choice of points c;y.

We will produce two convergent sequences of Riemann approximations, which converge to different
values. Let
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where ¢;; = (2,y) € [z;-1,2;] X [yj—1,y;] and z and y are rational. On the other hand, let
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where c;; = (z,y) € [z;1,%i] X [y;—1,y;] and at least one of z or y is irrational. This is possible since
there are both rational and irrational points in any interval [a, ] as long as b > a.

Thus
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and

S = i 0Az Ay = 0.
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Doing this for every n, we obtain sequences

{Sn}zo:1 = {1}20:1 and {S;L}ZO:1 = {0}20:1
both of which converge, but

lim S, = lim 1=1%# lim S, = lim 0=0.
n—oo

n—oo n—oo n—oo

Thus f is not integrable.



