
Math 350 Problem Set 1 solutions

Part I

1. (10pts) Why is the following (incorrect) de�nition of the limit a bad one (i.e. why does is fail to express
the idea that \f is close to c whenever x is close to x0")?

De�nition. limx!x0
f(x) = c if and only if, for all � > 0, there exists an � > 0, such that

kx� x0k < � =) kf(x)� ck < �:

For any � > 0, I let � = 1; 000; 000, or even larger if I need. In this way, I can show that, according
to this bad de�nition, limx!x0

f(x) is equal to almost any c I want, regardless of whether or not f is
actually approaching c. This gives us an idea of why, in the proper de�nition, we require � to exist
based on the value of �.

2. In these two problems, either �nd the limit if it exists, and show your answer is correct by giving an
�-� proof, or give an argument why the limit doesn't exist.

(a) (10pts)

lim
(x;y)!(0;0)

x3 � y3

x2 + y2

By evaluating along some curves, we see that the limit probably exists, and is equal to 0. Indeed,
a proof is as follows:

Proof. Given � > 0, choose � = �=2. Then whenever

kx� x0k =
�
x2 + y2

�1=2
< �;

we have

kf(x; y)� 0k =

��x3 � y3
��

x2 + y2
�
jxj

3
+ jyj

3

x2 + y2

=
(x2)3=2 + (y2)3=2

x2 + y2
�

(x2 + y2)3=2 + (y2 + x2)3=2

x2 + y2
= 2(x2 + y2)1=2 < 2� = �:

(b) (10pts)

lim
(x;y)!(0;0)

xy

x2 + y2

Along the coordinate axis y = 0, we have

lim
x!0

x 0

x2 + 02
= 0

and similarly for x = 0. However, along x = y we obtain

lim
x!0

x2

x2 + x2
= lim

x!0

1

2
=

1

2
6= 0:

Therefore the limit as (x; y)! 0 does not exist.
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3. The following theorems are proved in the internet supplement to the textbook. Try and prove them
on your own using the de�nition of continuity and the �-� characterization of limits. If you're unable
to prove them on your own, give yourself 5-10 minutes to look at the proof in the internet supplement,
and then put it aside and try and reproduce the proof without consulting it again. Please cite the
supplement if you end up using it.

(a) (10pts) If f : Rn ! R
m is continuous at x 2 Rn and g : Rm ! R

l is continuous at y = f(x) 2 Rm,
then g � f : Rn ! R

l is continuous at x. (Don't worry about domains and ranges; assume g � f is
de�ned.)

Proof. Let � > 0. By the continuity of g, there exists a �1 > 0 such that

ky � y0k < �1 =) kg(y)� g(y0)k < �

Let �2 = �1. By continuity of f , there exists a �2 > 0 such that

kx� x0k < �2 =) kf(x)� f(x0)k < �2

Set � = �2. Thus, we have

kx� x0k < � =) kf(x)� f(x0)k < �1 =) kg(f(x))� g(f(x0))k < �:

(b) (10pts) If f : Rn ! R
m and g : Rn ! R

m are continuous at x 2 Rn, then g + f : Rn ! R
m is

continuous at x. (Hint: you may be interested in using the triangle inequality ka+ bk � kak+kbk.)

Proof. Given � > 0, let �1 = �2 = �=2. By continuity of f and g, there exist �1 and �2 such that

kx� x0k < �1 =) kf(x)� f(x0)k < �1

and
kx� x0k < �2 =) kg(x)� g(x0)k < �2:

Choose � to be the smaller of �1 and �2:

� = min(�1; �2):

Then

kx� x0k < � =) kf(x) + g(x)� f(x0)� g(x0)k � kf(x)� f(x0)k+kg(x)� g(x0)k < �1+�2 = �:

4. (10pts) You're hiking on Mt. Badweather, whose height is described by a scalar function h(x; y), where
x and y represent latitude and longitude. All of a sudden (how could you have known?), a storm is
upon you, and you need to get down fast. Describe your optimal route in terms of a curve c : R! R

2,
t 7! (x(t); y(t)). Suppose you're only able to hike at a �xed speed (kc0(t)k =

p
x0(t)2 + y0(t)2 = 1 for

all t). Write the condition that c must satisfy in terms of h (and at each point in time) for you to get
down as quickly as possible. Why is this the best choice?

The problem is to write down a condition on c so that the composition h�c : R! R, which represents
altitude as a function of time, is decreasing as rapidly as possible. By the chain rule,

d(h � c)

dt
(t) = rh(x(t); y(t)) � c0(t);
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which we want to make as negative as possible. This occurs when c0(t) points exactly in the opposite
direction as rh, since

rh � c0 = krhk kc0k cos �;

where � is the angle between rh and c0, and this expression is most negative for � = �. Since
kc0(t)k = 1, c0 must be a unit vector in the opposite direction as rh, i.e.

c0(t) = �
rh(x(t); y(t))

krh(x(t); y(t))k
; for all t. (1)

That c(t) is uniquely determined by c(0) (our initial position) and equation (1) is the subject of a
di�erential equations class, but it's true.

5. (Extra credit: 10pts) In class, I showed an example (also in the textbook, p. 137, example 9) of a
function f : R2 ! R, both of whose partial derivatives exist at (0; 0), but which is not continuous at
(0; 0). Can you �nd an example of a function f : R2 ! R whose partial derivatives exist everywhere,
but is not continuous at some point? Why isn't this a counterexample to Theorem 8, p. 137, which
says that if f is di�erentiable at x, then f is continuous at x? Try to come up with one on your own,
and cite any sources if you �nd your example elsewhere.

In fact, a function on this homework is an example! (Provided we mend it just a bit). Indeed, let

f(x; y) =

(
xy

x2+y2 for (x; y) 6= (0; 0)

0 for (x; y) = (0; 0).

We showed above that this is not continuous at (0; 0), so it su�ces to show that the partial derivatives
exist everywhere. We can use ordinary calculus formulas to compute @f

@x ,
@f
@y for (x; y) 6= (0; 0):

@f

@x
=

y
�
(x2 + y2)2 � 2x2

�
(x2 + y2)4

;

and similarly,
@f

@y
=

x
�
(x2 + y2)2 � 2y2

�
(x2 + y2)4

:

At (x; y) = (0; 0) we must compute using the de�nition of the partial derivative:

@f

@x
(0; 0) = lim

h!0

f(h; 0)� f(0; 0)

h
=

h 0
h2+02 � 0

h
= 0

and
@f

@y
(0; 0) = lim

h!0

f(0; h)� f(0; 0)

h
=

0h
02+h2 � 0

h
= 0:

Of course, @f
@x and @f

@y are not continuous at (0; 0); if they were, f would be continuously di�erentiable

near (0; 0) and therefore continuous there.
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