
Math 2420 – Problem Set 3, due Monday 3/12.

Update 3/12: There is some sign involved in the cap/cross product formula in problem 3. Thanks
to Yilong for pointing this out.

Problem 1. Show that manifolds M and N are orientable if and only if M × N is orientable.

Show also that if α ∈ Hm(M ;R) and β ∈ Hn(N ;R) are fundamental classes, then α × β ∈
Hm+n(M ×N ;R) is a fundamental class.

Solution. Note that the cross product forms a map

× : Hm(M |x;R)⊗Hn(N | y;R) −→ Hm+n(M ×N |x× y;R) (1)

since (M \ x)×N ∪M × (N \ y) = M ×N \ x× y. Suppose for a moment that R = Z. From the

Künneth theorem (of which a fully relative version exists when the second factor in each pair is an

open set)

Hm+n(M ×N |x× y) ∼=
⊕

p+q=n+m

Hp(M |x)⊗Hq(N | y)⊕
⊕

p+q=m+n−1

Tor
(
Hp(M |x), Hq(N | y)

)
≡ Hm(M |x)⊗Hn(N | y)

since only Hm(M |x) and Hn(N | y) are nonzero. Thus (1) is an isomorphism for R = Z. In the

case of an arbitrary commutative ring R with identity it still holds that the product of generators

is a generator (i.e. ±1× 1 = ±1 still holds in (1)). We obtain analogous results by replacing x and

y by closed balls of finite radius.

If x 7−→ µx ∈ Hm(M |x;R) and y 7−→ νy ∈ Hn(N | y;R) are orientations for M and N it follows

that

(x, y) 7−→ µx × νy ∈ Hm+n(M ×N |x× y;R)

is an orientation for M × N (it satisfies the compatibility condition by passing to the product of

closed balls B1 3 x and B2 3 y.) The converse is similar.

For the result concerning fundamental classes, first consider R = Z again. From the Künneth

theorem

Hm+n(M ×N) ∼= Hm(M)⊗Hn(N)⊕ Tor
(
Hm(M), Hn−1(N)

)
⊕ Tor

(
Hm−1(M), Hn(N)

)
= Hm(M)⊗Hn(N)

since all other terms vanish and the Tor groups vanish since the top degree groups are free. Again

this implies that, for a general ring R, the map

× : Hm(M ;R)⊗Hn(N ;R) −→ Hm+n(M ×N ;R)

sends the product of generators to a generator. Since fundamental classes just amount to a choice

of generators for these groups, the result follows. Alternatively, one can use that the restriction

maps α 7−→ αx induced by M −→ (M,M \ x) and similarly for β satisfy

(α× β)(x,y) = αx × βy
by the earlier isomorphism. �
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Problem 2. For a (locally compact Hausdorff) space X let X+ denote the one-point compactifi-

cation. If the added point ∞ ∈ X+ has a neighborhood which is a cone with ∞ as a cone point (a

neighborhood deformation retract) show that the evident map

Hn
c (X;G) −→ Hn(X+,∞;G)

is an isomorphism for all n.

Solution. Recall that the compact Hausdorff space X+ = X ∪ {∞} is equipped with a topology

such that for any open set V ⊂ X+ with ∞ ∈ V , the complement X \ V is compact in X.

Now consider any compact set K ⊂ X. Since X+ is Hausdorff, there are open neighborhoods

U of K and V of ∞ in X+ which are disjoint. By the assumption that ∞ has a neighborhood

deformation retract, we may assume (by making V smaller if necessary) that V itself deformation

retracts to ∞. Letting L = X \ V , it follows that L is compact, K ⊂ L and furthermore for all n,

Hn(X |L) = Hn(X,X \ L) = Hn(X,V ) ∼= Hn(X+, V ) ∼= Hn(X+,∞),

where we have used excision and homotopy equivalence to obtain the two isomorphisms.

Thus we have demonstrated that for every compact K ⊂ X there is a compact set L such that

for all n, there is a homomorphism Hn(X |K) −→ Hn(X |L) (induced by the inclusion K ⊂ L)

and Hn(X |L) ∼= Hn(X+,∞). Thus in the computation of cohomology with compact supports, the

direct limit may be taken just over these sets L ⊂ X (this was a property of direct limits mentioned

in class). To wit,

Hn
c (X;G) = lim−→

K⊂X
Hn(X |K;G) = lim−→

L⊂X
Hn(X |L;G) ∼= Hn(X+,∞;G)

for each n. �
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Problem 3. Prove that, for φ ∈ H∗(X), ψ ∈ H∗(Y ), a ∈ H∗(X) and b ∈ H∗(Y ), the cap and cross

products are related by

(a× b) a (φ× ψ) = (−1)∗(a a φ)× (b a ψ),

with a sign that you should determine. Use this to compute all cap products in homology and

cohomology of Sm × Sn, where m and n may be equal.

Solution. The easiest way to determine the sign is the following argument. Let 〈, 〉 : Hn(X) ×
Hn(X) −→ Z be the pairing between cohomology and homology (or the cap product, if you like,

where the degrees are equal). Recall the following properties:

〈α, a a β〉 = 〈β ` α, a〉 , |a| = |α|+ |β| .

〈α× β, a× b〉 = 〈α, a〉 〈β, b〉 , |a| = |α| , |b| = |β| ,

where the notation |·| denotes the degree.

In addition to φ, ψ, a and b as above, suppose there are also given classes α ∈ H∗(X), β ∈ H∗(Y )

such that

|a| = |α|+ |φ| , |b| = |β|+ |ψ| .

Then we may compute

〈α× β, (a× b) a (φ× ψ)〉 = 〈(φ× ψ) ` (α× β) , a× b〉

= (−1)|ψ||α| 〈(φ ` α)× (ψ ` β) , a× b〉

= (−1)|ψ||α| 〈α, a a φ〉 〈β, b a ψ〉

= (−1)|ψ||α| 〈α× β, (a a φ)× (b a ψ)〉

The second line follows from the formulas for the cup product and cross product in terms of one

another and graded commutativity. Thus in order for the formula to hold, the sign must be given

by

(a× b) a (φ× ψ) = (−1)|ψ|(|a|+|φ|)(a a φ)× (b a ψ).

Note that, if every element of H∗(X × Y ) was represented by a product α × β, then the above

computation would prove the formula in general. Unfortunately, this is not generally true, so we

must resort to another argument.

Recall for a moment how the cap product is computed on the chain level. Given f ∈ C∗(X) =

Hom(C∗(X),Z), the chain map C∗(X) 3 a 7−→ a a f ∈ C∗(X) is determined by the composition

C∗(X)
∆−→ C∗(X)⊗ C∗(X)

f⊗1−→ C∗(X) (2)

where ∆ is any diagonal approximation (for instance, the Alexander-Whitney diagonal). Recall also

the cross product for cochains; given f ∈ C∗(X) and g ∈ C∗(Y ), the cross product f×g ∈ C∗(X×Y )

is the map

C∗(X × Y )
θ−→ C∗(X)⊗ C∗(Y )

f⊗g−→ Z⊗ Z ∼= Z
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To prove the formula then, consider the diagram

C∗(X)⊗ C∗(Y ) C∗(X × Y ) C∗(X × Y )⊗ C∗(X × Y )

C∗(X)⊗ C∗(X)⊗ C∗(Y )⊗ C∗(Y ) C∗(X)⊗ C∗(Y )⊗ C∗(X)⊗ C∗(Y ) C∗(X)⊗ C∗(Y )⊗ C∗(X × Y )

C∗(X)⊗ C∗(Y ) C∗(X × Y )

× ∆

∆⊗∆ θ⊗1

τ 1⊗×

φ⊗1⊗ψ⊗1
φ⊗ψ⊗1⊗1

φ⊗ψ⊗×
φ⊗ψ⊗1

×

The map a⊗ b 7−→ (a× b) a (φ× ψ) is the one obtained by starting at the upper left corner and

proceeding right two steps and down two steps. The map a⊗ b 7−→ (a a φ)× (b a ψ) is obtained

by starting at the upper left and going down two steps and then right.

The claim is that this diagram commutes up to sign and chain homotopy. (The correct signs

could in principle be determined from the diagram, but this is beyond my ability to do without

error, and besides we have already worked out the sign above.)

Indeed, the top portion of the diagram consists of chain maps which are natural in X and Y and

which have the “obvious” behavior 0 chains, so this top square commutes up to chain homotopy

by an acyclic models argument. The bottom portion of the diagram is easily seen to commute up

to sign. This completes the proof of the formula.

Before computing the cap products on Sm×Sn, note that the cap product makes sense as a map

a: Hn(X)⊗Hk(X) −→ Hn−k(X)

for all n and k, even if k > n. Indeed in the latter case, n − k < 0 so Hn−k(X) = 0 and the cap

product is just the zero map. To justify this claim on the chain level, simply note that if a ∈ Cn(X)

then the image of ∆a in C∗(X) ⊗ C∗(X) lies in the groups Cp(X) ⊗ Cq(X) such that p + q = n.

We interpret f ∈ Ck(X) = Hom(C∗(X),Z) as a chain map which is nonzero only on degree k, so

to compute a a f as in (2), the only nontrivial mapping occurs on p = k, and this is zero if k > n

since then we must have q = n− p = n− k < 0 and Cp(X)⊗ Cq(X) = Cp(X)⊗ 0 = 0.

Denote the generators of H0(Sm) and H0(Sn) by 1, and the generators of Hm(Sm) and Hn(Sn)

by α and β, respectively. Then denote the generators of H0(Sm) and H0(Sn) also by 1 (hopefully

no confusion should arise) and generators of Hm(Sm) and Hn(Sn) respectively by φ and ψ. Cap

products between the elements for Sm satisfy

α a φ = 1 α a 1 = α

1 a φ = 0 1 a 1 = 1,

and similarly for Sn.
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The homology and cohomology groups of Sm × Sn, m 6= n, are given by

Hk(S
m × Sn) =


Z 〈1× 1〉 k = 0

Z 〈α× 1〉 k = m

Z 〈1× β〉 k = n

Z 〈α× β〉 k = m+ n

Hk(Sm × Sn) =


Z 〈1× 1〉 k = 0

Z 〈φ× 1〉 k = m

Z 〈1× ψ〉 k = n

Z 〈φ× ψ〉 k = m+ n

and zero otherwise. When n = m the groups are given by

Hk(S
m × Sm) =


Z 〈1× 1〉 k = 0

Z 〈α× 1, 1× β〉 k = m

Z 〈α× β〉 k = 2m

Hk(Sm × Sm) =


Z 〈1× 1〉 k = 0

Z 〈φ× 1, 1× ψ〉 k = m

Z 〈φ× ψ〉 k = 2m

and zero otherwise. Using the formula, the nontrivial cap products on Sm × Sn (in either case

m 6= n or m = n) are therefore determined by the following multiplication table for generators:

a φ× ψ φ× 1 1× ψ 1× 1

α× β 1× 1 1× β (−1)mnα× 1 1× 1

α× 1 0 1× 1 0 α× 1

1× β 0 0 1× 1 1× β
1× 1 0 0 0 1× 1

Note: don’t be confused by the tempting but false(!) formula α × 1
?
= 1 × β when m = n. The

two elements α and β are distinct and not comparable. The general graded commutativity result

for the cross product states that α × β = (−1)|α||β|T ∗(β × α) where T : X × Y −→ Y ×X is the

transposition. So the correct (though not actually useful) statement in this case is

Hm(Sma × Smb ) 3 α× 1 ∼= 1× α ∈ Hm(Smb × Sma )

where we have been careful to label the factors of Sm to keep them distinct.

�
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