Math 2420 – Problem Set 1, due Monday 2/6.

Updated 2/2: typo fixed in problem 4. The retraction identity should be $r \circ i = \text{Id}$.

Problem 1. A proof of the Mayer-Vietoris sequence from the axioms:

(a) Given a commutative diagram of abelian groups

in which the rows are (long) exact, and every third vertical map (e) is an isomorphism, show that there is an induced long exact sequence

$$\cdots \longrightarrow A'_n \longrightarrow A''_n \oplus B'_n \longrightarrow B''_n \longrightarrow A'_{n-1} \longrightarrow \cdots$$

(Hint: define the map $A'_n \longrightarrow A''_n \oplus B'_n$ by $\alpha \longmapsto (j(\alpha), f(\alpha))$ and the map $A''_n \oplus B'_n \longrightarrow B''_n$ by $(\alpha, \beta) \longmapsto g(\alpha) - j(\beta)$. What should the third map be?)

(b) Use the above result to prove the Mayer-Vietoris sequence for homology using only the axioms for homology. (Hint: consider the long exact sequences of the pairs (X, A) and $(B, A \cap B)$, and use excision to relate the relative homology of these two pairs.)

Problem 2. Assume that a space $X = \bigcup_{i \leq n} A_i$ has a covering by *n* open sets A_i , with the property that any intersection $A_I = \bigcap_{i \in I} A_i$, $I \subset \{1, \ldots, n\}$ of these sets is either empty or has trivial homology:

$$\widetilde{H}_*(A_I) = 0, \quad \forall \ I \subset \{1, \dots, n\}.$$

Use the Mayer-Vietoris sequence to show that $\widetilde{H}_k(X) = 0$ for $k \ge n-1$. Give some examples that indicate that this is sharp, (i.e. $\widetilde{H}_k(X) \ne 0$ for some k < n-1.)

Problem 3. In any category C, the *coproduct* (also called the *direct product*) of two objects C_1 and C_2 (if it exists) is an object C' with morphisms $f_i : C_i \longrightarrow C'$, i = 1, 2 which has the following *universal property:*

• for any other object $D \in \mathcal{C}$ with morphisms $g_i : C_i \longrightarrow D$, i = 1, 2, there exists a unique morphism $h : C' \longrightarrow D$ such that $g_i = h \circ f_i$:

- (a) Show that a coproduct, if it exists, is unique up to unique isomorphism (i.e. if C' and C'' are both coproducts of C_1 and C_2 then there is a unique isomorphism $C' \longrightarrow C''$).
- (b) Show that coproducts always exist in the following categories, given by the following operations:
 - (i) In the category Top of topological spaces, $C' = C_1 \sqcup C_2$.
 - (ii) In the category Top_* of based topological spaces, $C' = C_1 \lor C_2$.
 - (iii) In the category AbGp of abelian groups, $C' = C_1 \oplus C_2$.

(In particular, the addition axioms for homology say that H_* and \tilde{H}_* take coproducts to coproducts.)

(c) Show that the operation of adjoining a disjoint basepoint,

$$(-)_{+}: X \longmapsto X_{+} = X \sqcup \{ \mathrm{pt} \}$$

is a functor from Top to Top_{*} which preserves coproducts, i.e.

$$(X_1 \sqcup X_2)_+ = (X_1)_+ \lor (X_2)_+.$$

Problem 4. Split exact sequences (c.f. Hatcher p. 147):

(a) For a short exact sequence of abelian groups

$$0 \longrightarrow A \xrightarrow{f} A' \xrightarrow{g} A'' \longrightarrow 0 \tag{1}$$

show that the following conditions are equivalent:

- (i) There exists a homomorphism $\phi: A'' \longrightarrow A'$ such that $g \circ \phi = \text{Id}$.
- (ii) There exists a homomorphism $\psi: A' \longrightarrow A$ such that $\psi \circ f = \text{Id}$.
- (iii) There exists an isomorphism $A' \cong A \oplus A''$ such that f(a) = (a, 0) and q(a, b) = b.

If these conditions hold, we say that (1) is *split*, or *split exact*.

(b) Let $i : A \subset X$ be the inclusion of a subspace, and recall that a *retraction* is a map $r : X \longrightarrow A$ such that $r \circ i = \text{Id}$. Show that if there is a retraction¹ X onto A, then the long exact sequence

$$\cdots \xrightarrow{\partial} H^{k-1}(A) \longrightarrow H^k(X, A) \longrightarrow H^k(X) \longrightarrow H^k(A) \xrightarrow{\partial} \cdots$$

degenerates into split short exact sequences, and

$$H^k(X) \cong H^k(X, A) \oplus H^k(A), \quad \forall \ k$$

¹it need not be a *deformation retraction*, which in addition satisfies $i \circ r \simeq \text{Id}$.