Math 1580 — Problem Set 2. Due Friday Sep. 23, 4pm

The first two problems on this problem set give a proof of the primitive root theorem:

Primitive Root Theorem. Let p be a prime number. Then there exists an element g € Z/pZ
such that

(Z/pZ)* = {1’9792’ s ’gp—Q} .

For the first problem, you will need the following fact, a proof of which is sketched at the end of
this problem set.

k=

Fact 1. For p prime, there are at most k solutions to the equation x (mod p).

Problem 1. Fix a prime p and let N(d) denote the number of elements of (Z/pZ)* with order d.
Show that if N(d) > 0, then N(d) = ¢(d), where ¢ is Euler’s phi function.

(Recall that ¢(d) is the number of a € 1,2,...,d — 1 such that ged(a,d) = 1, and that the order
of a is the smallest & such that a®* =1 (mod p).) Here are some steps:

(a) If there exists an a with order d, then a solves the equation 2% = 1 in Z/pZ. Show that any
other solution to this equation must be one of 1,a,a?,...,a% 1. (Use Fact 1.)

(b) Let b = a*, for some 1 < k < d — 1. Show that b has order d/ ged(k,d). (Hint: think about the
prime factorizations of d and k.)

(c¢) Conclude from (a) and (b) that, provided some element a with order d exists, then all the
elements of order d are of the form a* where ged(k,d) = 1, and that there are precisely ¢(d) of
these.

Problem 2. Prove the Primitive Root Theorem using the following steps.

(a) Show that the Primitive Root Theorem is equivalent to the statement that N(p — 1) > 0.
(b) From the result you proved in Problem 1, show that N(d) < ¢(d) for all d|(p — 1), and show
that, since the number of elements in (Z/pZ)* is p — 1,

p—1= Y N@< > o).

d|(p—1) dl(p—1)
(c) Show that for any integer n,
> o(d) =n. (1)
dn
Hint: consider the list of unreduced fractions
12 n- 1’ n (2)
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and their reduced forms m/n = a/d where ged(a, d) = 1. Argue that since 1 < m < n, we have
1 < a < d, and so the number of fractions in the list (2) whose reduced form has denominator
d is ¢(d). Use this to show (1).

(d) Combine the above two steps to conclude that

p—1= > N@< Y ¢d=p-1
dl(p—1) d|(p—1)

so equality holds, and therefore N(d) = ¢(d) for all d dividing p — 1. Show that ¢(p — 1) > 0
and conclude the theorem.



Problem 3. The Hill cipher is a symmetric cipher wherein the messages m and ciphertexts c are
vectors of dimension n with coefficients in Z/pZ, with p prime. Encryption and decryption are
given by

ex(m) = kim + ky (mod p)

di(c) = k7' (e — ky) (mod p),

where kg is a column vector of length n, and ky is an invertible n x n matrix, with inverse &} ! The
key consists of k1 and ko.

(a) Use the Hill cipher with p = 7 and key k = <; g)) ko = <Z> )

(i) Encrypt the message m = (%) .

(ii) What is the matrix k; ' used for decryption?
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(b) Explain why the Hill cipher is vulnerable to a chosen plaintext attack.

(c) The following plaintext/ciphertext pairs were generated using a Hill cipher with the prime
p = 11. Find the key k1, ko.

m= (@) o= ) = ()= () me= ()= )

(d) Explain how any simple substitution cipher that involves a permutation of the alphabet can be
thought of as a special case of the Hill cipher.

(iii) Decrypt the message ¢ =

Problem 4. Let g be a primitive root for IF. Define log,(h) to be the number x such that ¢* =

h (mod p).

(a) Suppose that z = a and = = b are both integer solutions to the congruence g* = h (mod p).
Prove that a = b (mod p — 1). Explain why this implies that the map

log, : F, — Z/(p— 1)Z
is well-defined.
(b) Prove that logg(hl he) = logg(hl) + logg(hg) for all hy, hy € T},
(c) Prove that log,(h") = nlog,(h) for all h € F; and n € Z.
(d) Compute logs(13) for the prime 23.

Problem 5. Alice and Bob agree to use the prime p = 1373 and the base g = 2 for communications
using the ElGamal public key cryptosystem.

(a) Alice chooses a = 947 as her private key. What is the value of her public key A?

(b) Bob chooses b = 716 as his private key, so his public key is

B =276 =469 (mod 1373).
Alice encrypts the message m = 583 using the ephermal key k = 877. What is the ciphertext
(c1,c2) that Alice sends to Bob?
(c) Alice decides to use a new private key a = 299 with associated public key A = 229 =

34 (mod 1373). Bob encrypts a message using Alice’s public key and sends her the cipher-
text (c1,c2) = (661,1325). Decrypt this message.



Proof sketch of Fact 1. Solutions to z¥ =1 (mod p) are the same as roots of the polynomial z* — 1
in Z/pZ. Specifically, we say a polynomial p(z) has a root « in Z/pZ (or any other ring) if p(«)
evaluates to 0 in Z/pZ.

We know that when p is prime, Z/pZ is a field, meaning all nonzero elements have an inverse.
You are no doubt familiar with polynomials over the fields R and C, and you learned that over
these fields, a polynomial of degree k has at most k roots (exactly k if the field is C, but no matter).
In fact, this holds over any field:

A polynomial of degree k over a field F has at most k roots in F.
This is because, if « is a root of p(x), then we can do polynomial long division to write
p(z) = (z — a)q(z)

where the degree of ¢ is less than the degree of p, and vice versa. Continuing this process, it is
clear that p has at most deg(p) roots. O

This does not work over Z/mZ when m is not prime, because doing polynomial long division over
Z/mZ requires the division of constants in Z/mZ, and if m is not prime, then there are numbers
which do not have inverses.

Observe for instance that there are 4 solutions to 22 =1 (mod 8).



