
Math 1580 – Problem Set 2. Due Friday Sep. 23, 4pm

The first two problems on this problem set give a proof of the primitive root theorem:

Primitive Root Theorem. Let p be a prime number. Then there exists an element g ∈ Z/pZ
such that

(Z/pZ)∗ =
{

1, g, g2, . . . , gp−2
}
.

For the first problem, you will need the following fact, a proof of which is sketched at the end of
this problem set.

Fact 1. For p prime, there are at most k solutions to the equation xk ≡ 1 (mod p).

Problem 1. Fix a prime p and let N(d) denote the number of elements of (Z/pZ)∗ with order d.
Show that if N(d) > 0, then N(d) = φ(d), where φ is Euler’s phi function.

(Recall that φ(d) is the number of a ∈ 1, 2, . . . , d− 1 such that gcd(a, d) = 1, and that the order
of a is the smallest k such that ak ≡ 1 (mod p).) Here are some steps:

(a) If there exists an a with order d, then a solves the equation xd ≡ 1 in Z/pZ. Show that any
other solution to this equation must be one of 1, a, a2, . . . , ad−1. (Use Fact 1.)

(b) Let b = ak, for some 1 ≤ k ≤ d− 1. Show that b has order d/ gcd(k, d). (Hint: think about the
prime factorizations of d and k.)

(c) Conclude from (a) and (b) that, provided some element a with order d exists, then all the
elements of order d are of the form ak where gcd(k, d) = 1, and that there are precisely φ(d) of
these.

Problem 2. Prove the Primitive Root Theorem using the following steps.

(a) Show that the Primitive Root Theorem is equivalent to the statement that N(p− 1) > 0.
(b) From the result you proved in Problem 1, show that N(d) ≤ φ(d) for all d|(p − 1), and show

that, since the number of elements in (Z/pZ)∗ is p− 1,

p− 1 =
∑

d |(p−1)

N(d) ≤
∑

d |(p−1)

φ(d).

(c) Show that for any integer n, ∑
d |n

φ(d) = n. (1)

Hint: consider the list of unreduced fractions

1

n
,

2

n
, . . . ,

n− 1

n
,
n

n
(2)

and their reduced forms m/n = a/d where gcd(a, d) = 1. Argue that since 1 ≤ m ≤ n, we have
1 ≤ a ≤ d, and so the number of fractions in the list (2) whose reduced form has denominator
d is φ(d). Use this to show (1).

(d) Combine the above two steps to conclude that

p− 1 =
∑

d|(p−1)

N(d) ≤
∑

d |(p−1)

φ(d) = p− 1

so equality holds, and therefore N(d) = φ(d) for all d dividing p − 1. Show that φ(p − 1) > 0
and conclude the theorem.
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Problem 3. The Hill cipher is a symmetric cipher wherein the messages m and ciphertexts c are
vectors of dimension n with coefficients in Z/pZ, with p prime. Encryption and decryption are
given by

ek(m) = k1m+ k2 (mod p)

dk(c) = k−11 (c− k2) (mod p) ,

where k2 is a column vector of length n, and k1 is an invertible n×n matrix, with inverse k−11 . The
key consists of k1 and k2.

(a) Use the Hill cipher with p = 7 and key k1 =

(
1 3
2 2

)
, k2 =

(
5
4

)
.

(i) Encrypt the message m =

(
2
1

)
.

(ii) What is the matrix k−11 used for decryption?

(iii) Decrypt the message c =

(
3
5

)
.

(b) Explain why the Hill cipher is vulnerable to a chosen plaintext attack.
(c) The following plaintext/ciphertext pairs were generated using a Hill cipher with the prime

p = 11. Find the key k1, k2.

m1 =

(
5
4

)
, c1 =

(
1
8

)
, m2 =

(
8
10

)
, c2 =

(
8
5

)
, m3 =

(
7
1

)
, c2 =

(
8
7

)
(d) Explain how any simple substitution cipher that involves a permutation of the alphabet can be

thought of as a special case of the Hill cipher.

Problem 4. Let g be a primitive root for Fp. Define logg(h) to be the number x such that gx ≡
h (mod p) .

(a) Suppose that x = a and x = b are both integer solutions to the congruence gx ≡ h (mod p) .
Prove that a ≡ b (mod p− 1). Explain why this implies that the map

logg : F∗p −→ Z/(p− 1)Z
is well-defined.

(b) Prove that logg(h1 h2) = logg(h1) + logg(h2) for all h1, h2 ∈ F∗p.
(c) Prove that logg(hn) = n logg(h) for all h ∈ F∗p and n ∈ Z.
(d) Compute log2(13) for the prime 23.

Problem 5. Alice and Bob agree to use the prime p = 1373 and the base g = 2 for communications
using the ElGamal public key cryptosystem.

(a) Alice chooses a = 947 as her private key. What is the value of her public key A?
(b) Bob chooses b = 716 as his private key, so his public key is

B ≡ 2716 ≡ 469 (mod 1373) .

Alice encrypts the message m = 583 using the ephermal key k = 877. What is the ciphertext
(c1, c2) that Alice sends to Bob?

(c) Alice decides to use a new private key a = 299 with associated public key A ≡ 2299 ≡
34 (mod 1373) . Bob encrypts a message using Alice’s public key and sends her the cipher-
text (c1, c2) = (661, 1325). Decrypt this message.

2



Proof sketch of Fact 1. Solutions to xk ≡ 1 (mod p) are the same as roots of the polynomial xk−1
in Z/pZ. Specifically, we say a polynomial p(x) has a root α in Z/pZ (or any other ring) if p(α)
evaluates to 0 in Z/pZ.

We know that when p is prime, Z/pZ is a field, meaning all nonzero elements have an inverse.
You are no doubt familiar with polynomials over the fields R and C, and you learned that over
these fields, a polynomial of degree k has at most k roots (exactly k if the field is C, but no matter).
In fact, this holds over any field:

A polynomial of degree k over a field F has at most k roots in F.

This is because, if α is a root of p(x), then we can do polynomial long division to write

p(x) = (x− α)q(x)

where the degree of q is less than the degree of p, and vice versa. Continuing this process, it is
clear that p has at most deg(p) roots. �

This does not work over Z/mZ when m is not prime, because doing polynomial long division over
Z/mZ requires the division of constants in Z/mZ, and if m is not prime, then there are numbers
which do not have inverses.

Observe for instance that there are 4 solutions to x2 ≡ 1 (mod 8).
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