Problem 1. (a) For H < G and a fixed g € G show that gHg~! is a subgroup of G with the same order
as H.
(b) Conclude that if H is the unique subgroup of order n then H is normal.

Solution. (a) That gHg ! is a subgroup can be verified by the subgroup criterion. Indeed, suppose ghig~*

and ghog~! are two elements in gHg~'. Then
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gh1g™  (ghag™") " = ghig~'ghs'g™" = ghihy'g™" € gHg

since hihy ' € H.
To see that H and gH ¢~ ! have the same order, observe that
f+H—gHg™',  f(h)=ghg™"

is a bijection. Indeed, it is manifestly surjective, and if gh1g~! = ghog~! then cancellation implies
hi = ha. (In fact f is a homomorphism, but this is not needed here.)

(b) Assume H is the unique subgroup with order n. Then for any g € G, gHg™
by part (a), hence it must be H:

!'is a subgroup of order n
gHg ' = H, for all g € G,

but this is precisely the statement that H is normal.
|

Problem 2. Suppose H and K are subgroups of G, and that the greatest common divisor (|H|, |K|) = 1.
Then HN K = {1}.

Solution. Since intersections of subgroups are subgroups, it follows that HN K < H and H N K < K. Then
by Lagrange’s Theorem, |H N K| must divide |H| and |K|. Since (|H|,|K]) =1 it follows that |H N K| =1
and therefore that H N K = {1}. O
Problem 3. If H < K <G, then |G: K| |K: H|=|G: H|.

Solution. By definition |G : H| is the number of elements in the set {gH : g € G} of cosets of H in G.
Recall that G is partitioned into these cosets, which are the equivalence classes with respect to the relation
g1 ~H g2 = G195 € H.

The idea is now to partition the set of cosets {gH : g € G} with respect to the equivalence relation

G H~gpH < gig,' €K.
We denote the equivalence class of gH with respect to this equivalence relation by [gH], so
lgH] ={g'H : g'H ~ gH}.

There are |G : K| distinct equivalence classes, since each may be labeled by an equivalence class of g € G
with respect to the equivalence relation g1 ~x go <= g195 ! ¢ K, which is none other than the set of
cosets {gK : g € G}.

Each equivalence class has the same size, since if [g1 H] and [g2H] are two equivalence classes, the map

[1H]) > gH — ¢'H € [g2H], ¢ =997 "9
is a bijection, with inverse
gHw—gH,  g=4495 g

Note that this works since ¢’g; ' = g9y ‘9295 * = 997 ' s0 g'g5 ' € K <= gg;' € K.
The size of any equivalence class is therefore equal to the size of the particular equivalence class

[kH] ={gH :g € K} = cosets of H in K
which is |[kH]| = |K : H|. We therefore conclude that
|G:H|=|G: K| |K:H]|. O

Problem 4. Let |G| < oo, H < G, N <G, and suppose that (|H|,|G : N|) =1. Then H < N.
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Proof. The idea is to show that because |H| and |G : N| are coprime, H must to to 1 in the quotient
m: G — G/N (this is equivalent to H < N).

So consider the image 7(H). We certainly have 7(H) < G/N since the image of a subgroup under a
homomorphism is a subgroup, thus |7(H)| divides |G/N| = |G : N| by Lagrange’s Theorem.

On the other hand, |7(H)| must divide |H| since n(H) = H/ker(m : H — G/N), so that |H| =
|7 (H)| |ker(m : H— G/N)| (in fact the kernel here is H N N < H, but that is not strictly needed).

Since (|H|,|G : N|) =1 it now follows that (|7(H)|,|G : N|) =1, so

|7(H)|=1 = =n(H)={1} = H<N. O

Problem 5 (The 4th isomorphism Theorem). Let N < G. Then subgroups of G = G//N are in bijection
with subgroups of G which contain N via

A<G/N < A=n(4), N<A<G,
where m: G — G/N denotes the canonical projection. Furthermore, if N < A and N < B, then
(1) A< B ifand only if A < B.
(2) f A< B then |B: A|=|B: 4.
(3) (4,B) = (A,B).
(4) A
(5) A

4 NB=ANB.
5 <G if and only if A< G.

Proof. If N < A < @, then 7(A) = A/N is a subgroup of G. In the other direction, if A < G, then
A = 771(A) is a subgroup of G (it is a general fact that the inverse image of a subgroup with respect to a
homomorphism is a subgroup), and N < A since N = 7~ !(1) and 1 € A. Furthermore, the maps sending A
to A =n(A) and A to 7~ 1(A) are clearly inverses, so these subgroups are in bijection.

To prove property (1), suppose that A < B. Then since every a in A is also in B it follows that

A/N ={aN:a€ A} < B/N ={bN :be B}.

Conversely, suppose that A < B. Then every aN € A is also in B, which means that aN = bN for some
b € B, and it follows that a = bn for some n € N. But bn € B since N < B, so a € B. Since a € A was
arbitrary, we conclude A < B.

For (2), we construct a bijection between the cosets {bA : b € B} of A in B and the cosets {bN'A : bN € B}

of A in B, via

(1) bA — DN A.

To see that this is well-defined, suppose that by A = by A. Then b; = boa for some a € A and it follows that
biNA = byaNA = byNaA = by NA.

In the second equality we used the fact that N is normal, so aN a”l = N <= aN = Na, and the third
equality follows from the fact that, for every ’N € A, a(a'N) = aa’N € A and vice versa. The map (1) is
clearly surjective. To see that it is injective, suppose that by NA = by NA. Then

btN =byNaN, for some aN € A,
and by normality it follows that
by N = byaNN = bsaN,
50 by = boan for some n € N. Since N < A, this means b; = bya’ where @’ = an € A so that b1 A = b A
For (3), recall that D = (A, B) is the smallest subgroup containing A and B. From (1) it follows that
D = D/N contains both A and B. If D’ were a smaller subgroup containing 4 and B, it would follow, again

from (1), that 7=1(D') was a strictly smaller subgroup containing A and B, which is a contradiction. We
conclude that

Part (4) is equivalent to the statement that 7=1(A N B) = AN B. To see one direction, note that, for
every g € ANB, m(g) € ANB,so AN B C 7~ 1(AN B). For the other direction, observe that AN B < A
and AN B < B, so by part (1) it follows that 7= 1(AN B) < AN B.
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Finally, for part (5), first assume that A < G, and consider an arbitrary aN € A and gN € G. Then
(2) (gN)(aN)(gN) ' =gNaNg'N =gag 'N=d'Nc A

for some a’ € A, and it follows that A < G. Conversely, suppose that A < G. For arbitrary a € A and g € G,
the assumption means that (2) holds, so in particular gag=' = a’'n € A for some a’ € A, n € N. Since
N <A, a'ne A, sothat A<G. O

Problem 6. Let A and B be two groups, with normal subgroups C' < A and D < B, respectively. Then
(Cx D)< (Ax B)and
(Ax B)/(C x D)= (A/C) x (B/D).

Proof. Recall that A x B is a group with respect to componentwise multiplication: (a,b)-(a’,b") = (ad’, bb’)
and inverses: (a,b)"! = (a=1,b71).. Let (¢,d) € C x D and (a,b) € A x B. Then

(a,b) (¢,d) (a,b)™* = (aca™,bdb™1) € C x D

by normality of C'in A and D in B. Thus C x D < A x B.
Note that cosets of C' x D in A x B have the form (a,b)(C x D) for various (a,b) € A x B. Define a
surjective map ¢ : (A x B)/(C x D) — (A/C) x (B/D) by

#((a,b)(C x D)) = (aC,bD) € (A/C) x (B/D).
¢ is a homomorphism since
¢((a,b)(C x D) (a/,b')(C x D)) = ¢((aa’,bb")(C x D))
= (ad'C,bb' D)
= (aC,bD) (d’C,b' D)
= gb((a,b)(C’ X D))¢((a’7b’)(C x D)).
Finally, ¢ is injective since
(aC,bD) = (d'C,b'D) < a=d'c, b=10Vd
for some ¢ € C and d € D, and it follows that
(a,b)(C x D) = (a’c,t/d)(C x D) = (a’, V') (¢,d)(C x D) = (a’',b')(C x D). |



