
Problem 1. (a) For H ≤ G and a fixed g ∈ G show that gHg−1 is a subgroup of G with the same order
as H.

(b) Conclude that if H is the unique subgroup of order n then H is normal.

Solution. (a) That gHg−1 is a subgroup can be verified by the subgroup criterion. Indeed, suppose gh1g
−1

and gh2g
−1 are two elements in gHg−1. Then

gh1g
−1(gh2g−1)−1 = gh1g

−1gh−12 g−1 = gh1h
−1
2 g−1 ∈ gHg−1

since h1h
−1
2 ∈ H.

To see that H and gHg−1 have the same order, observe that

f : H −→ gHg−1, f(h) = ghg−1

is a bijection. Indeed, it is manifestly surjective, and if gh1g
−1 = gh2g

−1 then cancellation implies
h1 = h2. (In fact f is a homomorphism, but this is not needed here.)

(b) Assume H is the unique subgroup with order n. Then for any g ∈ G, gHg−1 is a subgroup of order n
by part (a), hence it must be H:

gHg−1 = H, for all g ∈ G,

but this is precisely the statement that H is normal.
�

Problem 2. Suppose H and K are subgroups of G, and that the greatest common divisor (|H| , |K|) = 1.
Then H ∩K = {1} .

Solution. Since intersections of subgroups are subgroups, it follows that H ∩K ≤ H and H ∩K ≤ K. Then
by Lagrange’s Theorem, |H ∩K| must divide |H| and |K| . Since (|H| , |K|) = 1 it follows that |H ∩K| = 1
and therefore that H ∩K = {1} . �

Problem 3. If H ≤ K ≤ G, then |G : K| |K : H| = |G : H| .

Solution. By definition |G : H| is the number of elements in the set {gH : g ∈ G} of cosets of H in G.
Recall that G is partitioned into these cosets, which are the equivalence classes with respect to the relation
g1 ∼H g2 ⇐⇒ g1g

−1
2 ∈ H.

The idea is now to partition the set of cosets {gH : g ∈ G} with respect to the equivalence relation

g1H ∼ g2H ⇐⇒ g1g
−1
2 ∈ K.

We denote the equivalence class of gH with respect to this equivalence relation by [gH], so

[gH] = {g′H : g′H ∼ gH} .

There are |G : K| distinct equivalence classes, since each may be labeled by an equivalence class of g ∈ G
with respect to the equivalence relation g1 ∼K g2 ⇐⇒ g1g

−1
2 ∈ K, which is none other than the set of

cosets {gK : g ∈ G} .
Each equivalence class has the same size, since if [g1H] and [g2H] are two equivalence classes, the map

[g1H] 3 gH 7−→ g′H ∈ [g2H], g′ = gg−11 g2

is a bijection, with inverse

g′H 7−→ gH, g = g′g−12 g1.

Note that this works since g′g−12 = gg−11 g2g
−1
2 = gg−11 so g′g−12 ∈ K ⇐⇒ gg−11 ∈ K.

The size of any equivalence class is therefore equal to the size of the particular equivalence class

[kH] = {gH : g ∈ K} = cosets of H in K

which is |[kH]| = |K : H| . We therefore conclude that

|G : H| = |G : K| |K : H| . �

Problem 4. Let |G| <∞, H ≤ G, N EG, and suppose that (|H| , |G : N |) = 1. Then H ≤ N.
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Proof. The idea is to show that because |H| and |G : N | are coprime, H must to to 1 in the quotient
π : G −→ G/N (this is equivalent to H ≤ N).

So consider the image π(H). We certainly have π(H) ≤ G/N since the image of a subgroup under a
homomorphism is a subgroup, thus |π(H)| divides |G/N | = |G : N | by Lagrange’s Theorem.

On the other hand, |π(H)| must divide |H| since π(H) ∼= H/ker(π : H → G/N), so that |H| =
|π(H)| |ker(π : H → G/N)| (in fact the kernel here is H ∩N EH, but that is not strictly needed).

Since (|H| , |G : N |) = 1 it now follows that (|π(H)| , |G : N |) = 1, so

|π(H)| = 1 =⇒ π(H) = {1} =⇒ H ≤ N. �

Problem 5 (The 4th isomorphism Theorem). Let N E G. Then subgroups of G = G/N are in bijection
with subgroups of G which contain N via

A ≤ G/N ⇐⇒ A = π(A), N ≤ A ≤ G,
where π : G −→ G/N denotes the canonical projection. Furthermore, if N ≤ A and N ≤ B, then

(1) A ≤ B if and only if A ≤ B.
(2) If A ≤ B then |B : A| =

∣∣B : A
∣∣ .

(3) 〈A,B〉 =
〈
A,B

〉
.

(4) A ∩B = A ∩B.
(5) AEG if and only if AEG.

Proof. If N ≤ A ≤ G, then π(A) = A/N is a subgroup of G. In the other direction, if A ≤ G, then
A = π−1(A) is a subgroup of G (it is a general fact that the inverse image of a subgroup with respect to a
homomorphism is a subgroup), and N ≤ A since N = π−1(1) and 1 ∈ A. Furthermore, the maps sending A
to A = π(A) and A to π−1(A) are clearly inverses, so these subgroups are in bijection.

To prove property (1), suppose that A ≤ B. Then since every a in A is also in B it follows that

A/N = {aN : a ∈ A} ≤ B/N = {bN : b ∈ B} .
Conversely, suppose that A ≤ B. Then every aN ∈ A is also in B, which means that aN = bN for some
b ∈ B, and it follows that a = bn for some n ∈ N. But bn ∈ B since N ≤ B, so a ∈ B. Since a ∈ A was
arbitrary, we conclude A ≤ B.

For (2), we construct a bijection between the cosets {bA : b ∈ B} of A in B and the cosets
{
bNA : bN ∈ B

}
of A in B, via

(1) bA 7−→ bNA.

To see that this is well-defined, suppose that b1A = b2A. Then b1 = b2a for some a ∈ A and it follows that

b1NA = b2aNA = b2NaA = b2NA.

In the second equality we used the fact that N is normal, so aNa−1 = N ⇐⇒ aN = Na, and the third
equality follows from the fact that, for every a′N ∈ A, a(a′N) = aa′N ∈ A and vice versa. The map (1) is
clearly surjective. To see that it is injective, suppose that b1NA = b2NA. Then

b1N = b2NaN, for some aN ∈ A,

and by normality it follows that
b1N = b2aNN = b2aN,

so b1 = b2an for some n ∈ N. Since N ≤ A, this means b1 = b2a
′ where a′ = an ∈ A so that b1A = b2A.

For (3), recall that D = 〈A,B〉 is the smallest subgroup containing A and B. From (1) it follows that

D = D/N contains both A and B. If D
′

were a smaller subgroup containing A and B, it would follow, again

from (1), that π−1(D
′
) was a strictly smaller subgroup containing A and B, which is a contradiction. We

conclude that
D = 〈A,B〉 =

〈
A,B

〉
.

Part (4) is equivalent to the statement that π−1(A ∩ B) = A ∩ B. To see one direction, note that, for
every g ∈ A ∩ B, π(g) ∈ A ∩ B, so A ∩ B ⊆ π−1(A ∩ B). For the other direction, observe that A ∩ B ≤ A
and A ∩B ≤ B, so by part (1) it follows that π−1(A ∩B) ≤ A ∩B.
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Finally, for part (5), first assume that AEG, and consider an arbitrary aN ∈ A and gN ∈ G. Then

(2) (gN)(aN)(gN)−1 = gN aN g−1N = gag−1N = a′N ∈ A
for some a′ ∈ A, and it follows that AEG. Conversely, suppose that AEG. For arbitrary a ∈ A and g ∈ G,
the assumption means that (2) holds, so in particular gag−1 = a′n ∈ A for some a′ ∈ A, n ∈ N. Since
N ≤ A, a′n ∈ A, so that AEG. �

Problem 6. Let A and B be two groups, with normal subgroups C E A and D E B, respectively. Then
(C ×D)E (A×B) and

(A×B)/(C ×D) ∼= (A/C)× (B/D).

Proof. Recall that A×B is a group with respect to componentwise multiplication: (a, b) · (a′, b′) = (aa′, bb′)
and inverses: (a, b)−1 = (a−1, b−1).. Let (c, d) ∈ C ×D and (a, b) ∈ A×B. Then

(a, b) (c, d) (a, b)−1 = (aca−1, bdb−1) ∈ C ×D
by normality of C in A and D in B. Thus C ×D EA×B.

Note that cosets of C × D in A × B have the form (a, b)(C × D) for various (a, b) ∈ A × B. Define a
surjective map φ : (A×B)/(C ×D) −→ (A/C)× (B/D) by

φ
(
(a, b)(C ×D)

)
= (aC, bD) ∈ (A/C)× (B/D).

φ is a homomorphism since

φ
(
(a, b)(C ×D) (a′, b′)(C ×D)

)
= φ

(
(aa′, bb′)(C ×D)

)
= (aa′C, bb′D)

= (aC, bD) (a′C, b′D)

= φ
(
(a, b)(C ×D)

)
φ
(
(a′, b′)(C ×D)

)
.

Finally, φ is injective since

(aC, bD) = (a′C, b′D) ⇐⇒ a = a′c, b = b′d

for some c ∈ C and d ∈ D, and it follows that

(a, b)(C ×D) = (a′c, b′d)(C ×D) = (a′, b′) (c, d)(C ×D) = (a′, b′)(C ×D). �
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