
Real Analysis Final Exam questions, Spring 2018

Problem 1. Prove the that uniform limit of continuous functions is continuous.

Problem 2. Show that every Riemann integrable function f on [a, b] ⊂ R is Lebesgue integrable
and ∫ b

a
f(x) dx =

∫
[a,b]

f dλ,

by the following steps.

(a) For an appropriate sequence of partitions (Pn) such that U(f, Pn) − L(f, Pn) → 0, there are
monotone sequences of simple functions φn and ψn corresponding to the lower and upper sums,
respectively (so

∫
[a,b] φn dλ = L(f, Pn) and

∫
[a,b] ψn dλ = U(f, Pn)), such that φn ≤ f ≤ ψn for

all n. Show that ψn−φn → 0 almost everywhere, and conclude that f is the almost everywhere
limit of (φn).

(b) Show that f is measurable, and
∫
[a,b] f dλ = limn→∞

∫
[a,b] φn dλ =

∫ b
a f(x) dx.

Problem 3 (Completion of a metric space). Let X be an arbitrary metric space. Show that the
map i : X −→ C(X;R), where

i(p) = fp, fp(x) = d(x, p),

has the property that ‖i(p)− i(q)‖ = d(p, q); in particular i is injective and continuous. Show that
the closure i(X)− ⊂ C(X;R) is a complete metric space in which X (or really the set i(X) which
we may identify with X) is dense.

Problem 4. Let K be a compact metric space and (fk) a sequence of functions on K which is
uniformly bounded and equicontinuous. For each n ∈ N, define gn : K −→ R by

gn(x) = max {f1(x), . . . , fn(x)} .

Show that the sequence (gn) converges uniformly.

Problem 5 (Taylor’s Theorem with integral remainder).

(a) Let g : R −→ R be a function which is (k + 1) times continuously differentiable. Prove that

g(1) = g(0) + g′(0) +
1

2!
g′′(0) + · · ·+ 1

k!
g(k)(0) +

∫ 1

0

(1− t)k

k!

dk+1

dtk+1
g(t) dt

(Hint: consider the last term and integrate by parts).
(b) Now let f : A ⊂ R2 −→ R be (k+ 1) times continuously differentiable (meaning all (k+ 1)-fold

partial derivatives exist and are continuous)on a convex set A. Writing x = (x1, x2) for points
in A, prove that for all x, y ∈ A,

f(y) =
∑

0≤k1+k2≤k

1

k!

∂kf(x)

∂xk11 ∂x
k2
2

(y1 − x1)k1(y2 − x2)k2 +

∫ 1

0

(1− t)k

k!

dk+1

dtk+1
f
(
(1− t)x+ ty

)
dt.

Problem 6. Let f ∈ C([0, 1]) be a continuous function. Use Weierstrass approximation by poly-
nomials to show that if ∫ 1

0
xn f(x) dx = 0

for all n ≥ 0, then f = 0. (Hint: show that
∫ 1
0 f(x)2 dx = 0.)
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Problem 7 (Implicit Function Theorem). Let F : Rn × Rm −→ Rm be a differentiable function.
Denote points in the domain by (x, y), where x ∈ Rn and y ∈ Rm, and denote by DxF (x, y) ∈
L(Rn,Rm) and DyF (x, y) ∈ L(Rm,Rm) the total derivative of F as a map x 7−→ F (x, y) (with
y held constant) and as a map y 7−→ F (x, y) (with x held constant), respectively. Suppose that
F (x0, y0) = 0 and DyF (x0, y0) is invertible. Assuming the Inverse Function Theorem, prove that
there exists an open set U 3 x0 and a unique function g : U −→ Rm such that g(x0) = y0 and

F (x, g(x)) = 0.

Show that

Dg(x0) = −
(
DyF (x0, y0)

)−1
DxF (x0, y0).

Problem 8 (Limits and derivatives under the integral sign).

(a) Let (X,A, µ) be a measure space and f : X × (a, b) −→ R a function such that kt(x) = f(x, t)
is integrable for each t ∈ (a, b) and hx(t) = f(x, t) is continuous for each x ∈ X. Suppose that
there exists an integrable function g such that |f(x, t)| ≤ g(x) for all t. Show that

lim
t→t0

∫
X
f(x, t) dµ =

∫
X

lim
t→t0

f(x, t) dµ for every t0 ∈ (a, b).

In other words, F (t) =
∫
X f(x, t) dµ is continuous in t. (Hint: recall that h(t) is continuous

if and only if h(tn) → h(t) whenever tn → t; more generally limt→t0 h(t) = L if and only if
h(tn)→ L whenever tn → t.)

(b) Suppose now that hx(t) = f(x, t) is differentiable for each x and that there exists an integrable
function g(x) such that

∣∣ ∂
∂tf(x, t)

∣∣ ≤ g(x) for all t. Show that

d

dt

∫
X
f(x, t) dµ =

∫
X

∂

∂t
f(x, t) dµ.

(Hint: Use the Mean Value Theorem.)

Problem 9. Denote by GL(Rn) the set of linear maps A ∈ L(Rn,Rn) which are invertible.

(a) Show that if ‖B‖ < 1, then the series
∑∞

n=0B
n converges to (I −B)−1.

(b) Define Inv : GL(Rn) ⊂ L(Rn,Rn) −→ L(Rn,Rn) by Inv(A) = A−1. Show that Inv is differen-
tiable and D Inv(A) is the linear map defined by

D Inv(A)B = −A−1BA−1.

Problem 10 (Completeness of L1). Let (X,A, µ) be a measure space. For each integrable f :
X −→ R, define

‖f‖L1 =

∫
X
|f | dµ.

(a) Suppose that (fk) is a sequence of integrable functions such that
∑∞

k=1 ‖fk‖L1 < ∞. Define
s =

∑∞
k=1 |fk| : X −→ [0,∞] as a pointwise series (note that s(x) may be +∞ for some values

of x). Use the Monotone Convergence Theorem to show that∫
X
s dµ =

∫
X

∞∑
k=1

|fk| dµ =

∞∑
k=1

‖fk‖L1 .

In particular, show that the set E = {x : s(x) = +∞} has measure zero.
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(b) With (fk) as above, show that f =
∑∞

k=1 fk converges pointwise almost everywhere. Use the
Dominated Convergence Theorem to show that∫

X
f dµ =

∫
X

∞∑
k=1

fk dµ =
∞∑
k=1

∫
X
fk dµ.

(c) Suppose (gk) is a sequence which is Cauchy in L1 meaning for all ε > 0 there exists K ∈ N
such that

‖gk − gl‖L1 < ε, for all k, l ≥ K.

Pass to a subsequence (gkn) such that
∥∥gkn+1 − gkn

∥∥
L1 < 2−n. Use the above to show that

lim
n→∞

gkn =
∞∑
n=1

gkn+1 − gkn

converges almost everywhere to an integrable function g := limn gkn and conclude that limk ‖gk − g‖ =
0, i.e., gk converges to g in L1.
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